

EXPLORING
 COMPUTER SCIENCE WITH

 Lynx 			
			

Written by: Thomas Walsh Jr. PhD, Teacher / Author

Exploring Computer Science With Lynx

 2

Right to Use Lynx

 To get full benefit from this e-book, the user should get a Lynx Annual Subscription either
an Individual Plan or a School / Club Plan. There is a time-limited Free Trial for Lynx but this
would require the User to cram all the lessons in a short time frame. This Free Trial also limits the
number of projects a user can save.

 Before deciding what plan to choose, if any, a user can simply click on the Create a Lynx
Project (red button on the home page of lynxcoding.club). This will allow the user to explore Lynx
but saving is not possible since no user account will be registered.

 Important note for Canadians: The Government of Canada has purchased Subscriptions for
Canadian residents therefore they have nothing to pay.

© LCSI excluding those sections indicated as © Thomas Walsh Jr., 2020. All rights reserved. The
document contained herein may not be reproduced or photocopied, stored in retrieval systems or
transmitted, in any form or by any means, electronic, mechanical, recording or otherwise, without
the prior approval of Logo Computer Systems Inc. Notwithstanding the foregoing, schools,
libraries and individuals that have a valid license to use the Lynx coding app found at
https://lynxcoding.club may copy and distribute, for use within the school, library or personal
residence, all pages except pages 6 – 8 written by Seymour Papert.

Lynx is a trademark and LCSI is a registered trademark of Logo Computer Systems Inc.

© 2020 Thomas Walsh Jr., Registered United States Copyright Office, Library of Congress

Exploring Computer Science With Lynx

 3

Table of Contents

Preface 5

Section 1: Introduction
What is Logo? And Who Needs It? by Professor Seymour Papert 6
Microworlds, Computational Thinking, and 21st Century Learning 9

Section 2: Using Lynx to Introduce Computer Science 17
Acknowledgements 17
Teacher and Parent Reflections 18
List of Figures 19
Logo Coding for Essential Skills, Cognitive Development, and Learning Benefits Using
 Teacher Mediated Scaffolding 20
Teacher Lesson Plans 29
Lesson 1: Introduction to Lynx Procedures and Turtle Commands 29
Lesson 2: The Repeat Command and Geometric Shapes 30
Lesson 3: Introducing Turtle Programs 31
Lesson 4: Creating Modular and Recursive Programs 32
Lesson 5: Assigning Variable in Logo Programming 33
Lesson 6: Animating Turtle Shapes with a Slider and Adding Features 34
Lesson 7: Going Further: Words and Lists in Logo Procedures 35
Lesson 8: Applying Graphics, Animation, and Interactive List Procedures for
 Developing Games 36
Teacher Activities Answer Guide and Resources 37
Turtle Degrees Answer Key 37
Lynx Turtle Shapes Answer Guide 38
Lynx Observation Form (Lessons 1-3) 39
Lynx Rubric Evaluation (Lessons 4-8) 40
Turtle Primitives Flashcard Cut Outs* 41

Section 3: Introducing Lynx in Eight Lessons 51
Navigating the Lynx Platform 51
Layout Windows Design 51
User Guide Support: Getting Started and List of Primitives 52
Lynx User Policy 53
Saving Projects and Sharing with Friends 53
Drawing Turtle Graphics 54
Additional Primitive Drawing Commands 54
Lynx Program Project – Turtle Commands 56
Changing Pensize, Graphic Color, and the Fill Command 56
Lynx Program Project – Colors 58
Repeat It! 58
What Does Repeat Do? 58
Lynx Program Project - Repeat 59

Exploring Computer Science With Lynx

 4

Table of Contents (Continued)

Introducing Turtle Programs 60
Getting Inside the Turtle’s Backpack to Run Programs on a Click 61
Adding a Button to Your Lynx Project 62
Lynx Program Project – Procedures 63
Creating Modular Programs 64
Lynx Program Project – Modular Procedures 67
Simple Logo Recursion 68
Lynx Program Project – Modular Recursive Procedures 70
Assigning Variables in Logo Programming 70
Lynx Variable Program Project 76
Recursive Variable Modular Procedures in Logo Programming 76
Lynx Modular Variable (Recursion) Project 78
Animating Turtle Shapes 79
Adding a Button and Slider for Animation of Shapes 80
Animation Procedures with Varying Shape Speed and Added Background 83
Additional Feature for Project Development 84
Adding Pages 84
Adding Sound and Music 84
A Clickable and Detectable Turtle to Control Movement 84
Lynx Animation Program Project 85
Going Futher: Words and Lists in Logo Procedures 85
The Print Statement and Character String Changes 85
Defining and Manipulating Words, Lists, and Sentences 87
Words and Lists in Logo Program Procedures 92
Lynx Words and Lists Program Project 94
Interactive Lists and Numbers Programs 94
Lynx Interactive Lists and Numbers Program Project 97
Applying Graphics, Animation, and Interactive List Procedures for Developing
 Games 97
Interactive Game Project 98
Appendix: Resources & Activities 99
Turtle Primitives 100
Turtle Degrees 101
Lynx Turtle Shapes 103
Repeat Predictions 104
A-Mazing 106
Cognitive Monitoring Planning 108
Cognitive Monitoring Student Project Example 111
Changing Procedures and Predicting Skills 113
Multiple Turtles 115
A Turtle Calculator Application 116
Turtle Degree Clock 118
Logo Program Procedures Learning Models from Figures 119
Guided References and Resources 131

Exploring Computer Science With Lynx

 5

Preface

 This book was written to support teachers wishing to introduce coding to their students,
ages 9 to 14. This curriculum provides a teaching methodology that introduces basic turtle
commands and procedures found in the Logo programming language. The lessons progress
introducing graphics programming, coding features (i.e., variables and recursion), animation, use
of words and lists, and developing gaming projects. The extent of teacher material coverage, and
the suggested lesson time period, will depend on the grade level and capabilities of the students.
Turtle activity ideas provided at the end of each lesson suggests differentiated learning
opportunities for students.

 To become familiar with the educational philosophy of Dr. Seymour Papert, and Logo
itself, it is suggested that the teacher read the Section 1 introduction.

 Teachers will gain additional insight by reading the article in Section 2: Logo Coding for
Essential Skills, Cognitive Development, and Learning Benefits Using Teacher Mediated
Scaffolding describes teaching elementary and middle school students using coaching and teacher
scaffolding techniques; along with support for student cognitive benefits in learning Logo based on
implementing more carefully planned teacher-directed lessons using teacher-mediated instruction.

 Section 3 explains, for students and teachers, Logo commands and procedures with
examples of student figures related to the topic areas. The teacher may prefer to photocopy the
lesson plans as handouts and/or provide this e-book for student on-screen reading and/or use a
Smart Board or LCD projector to display pages for all students to see. Student may find it helpful
to have a copy of the e-book on their computer desktop to copy program codes to the Procedures
Tab and access the URL links provided. The Turtle Hints, throughout the text, provide further
guidance in using the Lynx program (e.g., coding tips and use of tools).

 The Appendix Resources and Activities are integrated into the lessons to support
instructional learning and may be provided as handouts. The Turtle Degree Clock with turning
activities and A-Mazing has been found to assist students in learning degrees to support
development of Logo graphics. Other activities have been found to assist students learning Logo
primitives, developing understanding of the repeat command, and using words and lists number
procedures. Flash cards are included for the most frequently-used commands and may be printed
for display on a bulletin board for easy reference. Cognitive monitoring along with predicting
procedure outcomes support student problem solving development and program planning skills.
The coding procedure examples illustrated in the figures are available in the appendix for student
viewing and ideas for developing their projects. Suggested use of the Lynx observation form and
rubric evaluation is provided for the lessons, and may be helpful as a tool for mini-conferencing
with students to focus development of their individual Logo projects.

Exploring Computer Science With Lynx

 6

Section 1: Introduction

What is Logo? And Who Needs It? by Professor Seymour Papert
Extracted from Logo Philosophy http://www.microworlds.com/company/philosophy.pdf
(Note: If a link does not work inside the pdf then copy and paste the URL into your browser.)

What is Logo?

I have myself sometimes slipped into using an answer given by many Logoists in the form
of a definition: “Logo is a programming language plus a philosophy of education” and this latter is
most often categorized as “constructivism” or “discovery learning.” But while the Logo spirit is
certainly consistent with constructivism, there is more to it than any traditional meaning of
constructivism and indeed more to it than “education.” The right answer to “what is Logo” cannot
be “An X plus a Y.” It is something more holistic and the only kind of entity that has the right kind
of integrity is a culture and the only way to get to know a culture is by delving into its multiple
corners.

Logoists reject School’s preoccupation with getting right or wrong answers. What others
might describe as “going wrong” Logoists treat as an opportunity to gain better understanding of
what one is trying to do. Of course rejecting “right” vs. “wrong” does not mean that “anything
goes.” Discipline means commitment to the principle that once you start a project you sweat and
slave to get it to work and only give up as a very last resort. Life is not about “knowing the right
answer” – or at least it should not be – it is about getting things to work!

The frame of mind behind the Logo culture’s attitude to “getting it to happen” is much
more than an “educational” or “pedagogic” principle. It is better described as reflecting a
“philosophy of life” than a “philosophy of education.” But insofar as it can be seen as an aspect of
education, it is about something far more specific than constructivism in the usual sense of the
word. The principle of getting things done, of making things — and of making them work – is
important enough, and different enough from any prevalent ideas about education, that it really
needs another name. To cover it and a number of related principles (some of which will be
mentioned below) I have adapted the word constructionism to refer to everything that has to do
with making things and especially to do with learning by making, an idea that includes but goes far
beyond the idea of learning by doing.

I want to emphasize here what might for educational decision-makers be the most
important difference between the “n word” constructionism and the “v word” constructivism. The
v-word refers to a theory about how math and science and everything else is learned and a proposal
about how they should be taught. The n-word also refers to a general principle of learning and
teaching, but it also includes a specific content area that was neglected in traditional schools but
which is becoming a crucial knowledge area in the modern world.

Choosing constructivism as a basis for teaching traditional subjects is a matter for
professional educators to decide. I personally think that the evidence is very strongly in favor of it,
but many teachers think otherwise and I respect their views. But the constructionist content area is
a different matter. This is not a decision about pedagogic theory but a decision about what citizens

Exploring Computer Science With Lynx

 7

of the future need to know. In the past most people left the world only slightly different from how
it was when they found it. The rapid and accelerating change that marks our times means that
every individual will see bigger changes every few years than previous generations saw in a
lifetime. So this is the choice we must make for ourselves, for our children, for our countries and
for our planet: acquire the skills needed to participate with understanding in the construction of
what is new OR be resigned to a life of dependency.

A crucial aspect of the Logo spirit is fostering situations that the teacher has never seen
before and so has to join the students as an authentic co-learner. This is the common constructivist
practice of setting up situations in which students are expected to make their own discoveries, but
where what they “discover” is something that the teacher already knows and either pretends not to
know or exercises self-restraint in not sharing with the students. Neither deception nor restraint is
necessary when teacher and student are faced with a real problem that arises naturally in the course
of a project. The problem challenges both. Both can give their all.

I like to emphasize this last point by the following analogy. The best way to become a good
carpenter is by participating with a good carpenter in the act of carpentering. By analogy the way
to become a good learner is by participating with a good learner in an act of learning. In other
words, the student should encounter the teacher-as-learner and share the act of learning. But in
school this seldom happens since the teacher already knows what is being taught and so cannot
authentically be learning. What I see as an essential part of the Logo experience is this relationship
of apprenticeship in learning. Logo, both in the sense of its computer system and of its culture of
activities, has been shaped by striving for richness in giving rise to new and unexpected situations
that will challenge teachers as much as students. In so doing, the Logo culture approaches teachers
as intellectual agents.

It is important to recognize – only slightly simplifying a complex issue—two wings of
digital technology: technology as an informational medium and technology as a constructional
medium in which garb it is more like wood and bricks and steel than like printing or television. Of
course the two wings are equally important; but popular perception is dominated by the
informational wing because that is what people see and ceaselessly hear about and that is what
reflects the predominant role of informational media in their lives.

This one-sidedness in perception of technology has produced a deep distortion of how
people think about its contribution to education. This has happened because education itself has
two wings that also could be called “informational” and “constructional.” Part of learning is
getting information that might come from reading a book or listening to a teacher or by visiting
sites on the Web. But that is only one part of education. The other part is about doing things,
making things, constructing things. However here too there is an imbalance: in large part because
of the absence of suitable technologies, the constructional side of learning has lagged in schools,
taking a poor second place to the dominant informational side.

Before making my final point let me review some of the features of the Logo culture that I
have mentioned in relation to the chapters of this book.

Exploring Computer Science With Lynx

 8

The Logo programming language is far from all there is to it and in principle we could
imagine using a different language, but programming itself is a key element of this culture.

So is the assumption that children can program at very young ages.

The assumption that children can program implies something much larger: in this culture
we believe (correction: we know) that children of all ages and from all social backgrounds can do
much more than they are believed capable of doing. Just give them the tools and the opportunity.

Opportunity means more than just “access” to computers. It means an intellectual culture in
which individual projects are encouraged and contact with powerful ideas is facilitated.
Doing that means teachers have a harder job. But we believe that it is a far more interesting and
creative job and we have confidence that most teachers will prefer “creative” to “easy.”

For teachers to do this job they need the opportunity to learn. This requires time and
intellectual support. Just as we have confidence that children can do more than people expect from
them we have equal confidence in teachers.

We believe in a constructivist approach to learning. But more than that, we have an
elaborated constructionist approach not only to learning but to life. We believe that there is such a
thing as becoming a good learner and therefore that teachers should do a lot of learning in the
presence of the children and in collaboration with them.

We believe in making learning worthwhile for use now and not only for banking to use
later. This requires a lot of hard work (we’ve been at it for thirty years) to develop a rich collection
of projects in which the interests of the individual child can meet the powerful ideas needed to
prepare for a life in the twenty- first century.

My belief is that the Logo philosophy was not invented at all, but is the expression of the
liberation of learning from the artificial constraints of pre-digital knowledge technologies.

Exploring Computer Science With Lynx

 9

MicroWorlds, Computational Thinking, and 21st Century Learning
	 	
 “Understanding procedures and processes is important in math. There’s a fantastic way to
do that – it’s called programming.”(Conrad Wolfram: Teaching kids real math with computers,
http://www.ted.com/talks/conrad_wolfram_teaching_kids_real_math_with_computers.html)

In these section, references are made to MicroWorlds EX, MicroWorlds or MW. This was an older
version of Logo designed around 2005. The newest version of Logo is Lynx, designed in 2019 and
2020.

Human/computer Mutualism
 As we have changed technology, technology has also changed us – especially in how we
think about thinking and seek new ways to solve the many questions and problems we face.
Technology has radically enhanced communication and global collaboration and made it easier to
carry out vast numbers of complex, yet routine calculations. It has, also, at a different level, and
maybe even more importantly, provided us with a medium in which to develop new patterns of
thinking. As scientists, whether in the area of physical, health, or social sciences, are influenced by
computer science, they have gained new perspectives on how to approach both problems, old and
new, and innovation in research design and interpretation.

Computational Thinking – An Essential Skill for the 21st Century
 Computers have freed us from the onerous and sometimes impossible task of running long,
complex calculations, the type often required in research, so that researchers now can more easily
focus on the big ideas and patterns that emerge. In thinking as a computer scientist, researchers
become aware of behaviors and reactions that can be captured in algorithms or can be analyzed
within an algorithmic framework.

 This way of thinking - computational thinking - now gives them a different framework for
visualizing and analyzing, a whole new perspective. To rephrase a common idiom, “Until you have
a screwdriver, everything looks like a nail.”

 Computational thinking depends on a variety of skills (logic, creativity, algorithmic thinking,
modeling/simulations), involves the use of scientific methodologies, and helps develop both
inventiveness and innovative thinking. It has roots in mathematics, engineering, technology, and
science, and, in the synthesis of ideas from all these fields, has created a way of thinking that is
only just beginning to generate enormous changes and benefits.

Thinking about Thinking through Programming
 Just using computers does not necessarily lead to the development of computational thinking.
Facebook, Twitter, Flickr, Google, while all great applications, do not require or involve the same
skills. Computational thinking is a learned approach and there’s no better way to learn it than
through programming. Programming employs all the components of computational thinking and
the knowledge gained through the experience of tackling programming challenges – both explicit
and tacit - can provide a cognitive framework not only for computer science, but for any field,
from natural and health sciences to the social sciences and humanities.

Exploring Computer Science With Lynx

 10

 So, here we have an important, essential and very truly 21st century “skill”- computational
thinking - that is best learned through experience, interactions, actively doing. It allows students
who learn to express themselves through programming (and who have the time to gain this
knowledge) to not only answer questions but also generate new ones as they begin to view these
challenges through the lens of the tacit knowledge intrinsic to computational thinking.

 A student, when using programming to tackle a question, has to develop a hypothesis as to
how best to solve or answer it, then build, through analysis of the problem, a set of rules (an
algorithm) that can be used to test the hypothesis, after which she can review the results (data), and
revise the solution. The art of programming requires creativity and inventiveness, logic,
algorithmic thinking, and an appreciation of the recursive nature of this process, as the student
learns from her failures, refines her work, and gets a deeper understanding of the problem. As with
any creation, even once a solution is found – a pattern, an algorithm – the solution can be refined,
simplified and beautified, made more elegant. In a way, programming provides the same
satisfaction as a video game – the opportunity to find a path – one of many - through a problem.
(It’s logical – video games are created by programmers!) The difference here is that students can
answer their own questions and create their own challenges.

Patterns and Algorithmic Thinking
 With applications such as MicroWorlds EX children have the opportunity to develop their
computational thinking abilities. The approach to thinking that exploring with MicroWorlds helps
develop can become a lens for how they understand and frame ideas and tackle challenges in all
areas of the curriculum.

 Using MicroWorlds EX, students experiment with mathematical ideas such as number,
angles and geometric shapes, variables, and recursion. As they gain experience by experimenting
with turtle commands, students can begin to sequence instructions and see the outcomes,
hypothesizing as to which sequence creates the result they want and then testing their ideas. It is
through this sequence of actions – seeing a pattern, creating a rule (an algorithm) that describes
that pattern and then testing to see if the logic is correct – repeated over time and in a playful,
exploratory approach – that learners begin to develop a new perspective on how to approach
questions/challenges in other areas. This is particularly powerful if a teacher is there to coach them
as they think about what they did to tackle a previous challenge and how that can be used to tackle
the next in other to help them think about their learning.
		
 As anyone who has used a computer during the last few decades realizes, there’s no limit to
what computer programmers can create – and MicroWorlds EX opens this door to all learners, no
matter what their age. As students explore different MicroWorlds commands, they begin to
understand how a series of actions can create a specific result. Run an instruction, see a reaction.
It’s the core of data collection (and its useful to highlight this link).

 Next, combine some instructions and see the result. Combine them in a variety of ways to
see how the results each time may differ. This extends the exploration.

 Once students are introduced to the idea that by grouping several instructions in a specific
order they not only get a desired result, but an object that may be useful in multiple situations.

Exploring Computer Science With Lynx

 11

They can preserve this algorithm by creating a procedure, a user-defined, localized command to do
a specific task. In this way, students begin to extend the MW language in a very personalized way.
A project can now include newly created programmed objects that can be used in other instances
or copied into other projects, shared with other people, or manipulated in different ways.

 Turtle graphics is a classic starting point for exploring patterns with MicroWorlds, as
students use the turtle as an object with which to explore. One doesn’t have to look beyond what is
often a first exploration with Logo – drawing a square.

 A student may readily understand that to draw a square using the MicroWorlds turtle, one
should type something similar to this:
Instruction set #1:

 forward 100 Moves the turtle forward a specified number of pixels or ‘turtle-steps’
 right 90 Pivots the turtle a specified number of degrees to the right
 forward 100
 right 90
 forward 100
 right 90
 forward 100

 In this set of instructions, the turtle moves forward 100 pixels to create each side of the
square and pivots 90 to create each corner. At this point, the turtle has returned to its starting
position on the screen, but in order to be pointing in the same direction as when it began, the
student would need to add:
 right 90

 A clear pattern emerges - each set of two instructions (a forward and a right instruction) are
repeated four times. At this point, the student may chose to use the repeat command. This
command repeats a list of instructions a specified number of times:
Instruction set #2:

 repeat 4[forward 100 right 90]

Either set of instructions draws a square, the desired outcome.

 According to www.mathworld.wolfram.com, an algorithm is “a specific set of instructions
for carrying out a procedure or solving a problem.” The set of instructions to draw a square are a
springboard to looking for patterns in order to create other geometric shapes. How would one
create a similar representation of a pattern in order to draw a triangle? What makes a triangle a
triangle and not a different shape? What kind of triangle can you draw?

 What if the following instruction is typed by mistake?
 repeat 4[forward 90 right 100]

 Instead of this being an error, this is an opportunity to analyze what happened. The student
may ask: Why did this happen? How many times do I need to repeat these instructions to get back

Exploring Computer Science With Lynx

 12

to the place where I started? The shape begins to look like a star. Could it be that stars have similar
patterns? What shape is this? (A torus) How can I make a larger/smaller space in the center? In
other words, the student learns how to ask questions, how to look for patterns, how to test ideas,
and how to create instructions (rules) that let her either repeat the same pattern or adapt it.

 For beginning programmers, having a good coach–one who helps them look for patterns and
figure out from the data (the drawing) why the resulting drawing occurred-is critical. Although the
student may be able to recognize the patterns and understand the data, a good coach can help focus
on meta-cognitive skills by asking well-designed, guiding questions.

Recursion
 Another aspect of computational thinking is an understanding and recognition of recursive
patterns. Patterns are often repeated in mathematical solutions, nature, in other areas of science,
and often these patterns are repeated with modifications – modifications that can be codified since
they are based on some rule. Recursion is the process of describing an action in terms of itself.
(This will become clearer below.) The more one plays around with the idea of recursion, the more
one begins to recognize its presence in other disciplines.

 The following procedure shows a simple example of recursion through programming.
(Procedures extend the MicroWorlds EX vocabulary with words that you define yourself. A
procedure is a group of instructions with a name that you assign to it. When you define a
procedure, the name becomes part of the MicroWorlds EX vocabulary for that project.)
 to move
 forward 1
 move
 end

 The word to and the procedure name begins every procedure definition. This is the first
instruction. It tells the turtle to move forward one pixel.

 The second instruction says run this procedure again. All procedures end with the word end
– letting MicroWorlds know this is the end of the procedure.

 Each time the move procedure runs, the turtle moves forward one pixel (one “turtle step”)
and then runs move (again), which tells MicroWorlds to move the turtle forward one pixel and
then run move (again), and so on. Notice that the built-in command “forward” requires an input to
tell it how much the turtle should move forward.

 This is recursion at its most basic level. By changing the procedure slightly, various effects
can be observed.

to move :step
forward :step move :step + 1
end

 :step is a variable, standing in for a value. Now the turtle moves forward whatever value is
provided for :step The next time move is run, :step will increase by 1.

Exploring Computer Science With Lynx

 13

 The move procedure now requires an input, just as forward requires an input. Now, to run
the move procedure, an initial value for :step (which stands for ‘the variable named step’) needs
to be added, so the instruction would be:
 move 1

 Now each time the move procedure runs, the turtle moves forward whatever the value of
:step is. The first time, the turtle moves forward one pixel and then runs move (again), but now the
value of :step increases by one. This time when the move procedure runs, MicroWorlds EX
moves the turtle forward two pixels and then runs move (again) increasing :step by 1 again, and
so on. In this version of move, the turtle doesn’t just continue to move forward, but it accelerates
(eventually moving so fast that it becomes a mere blur on the screen).

 Being able to express the rules of a recursive pattern through programming helps students
better understand and recognize these patterns. Here is another example:
 to spiral :step :angle
 if :step = 100[stop] This conditional statement says if :step equals 100, the

procedure stops. This prevents the turtle from spiraling forever.
 forward :step
 right :angle Right tells the turtle to pivot a specific number of degrees.
 spiral :step + 2 :angle
 end

 spiral 2 60 would look like this when run:

Programming provides an opportunity to play with pattern rules to see the effect of simple
changes. For example:
	
 Spiral 4 60 the first side is 4 pixels long, but the spiral is very similar to the

previous one.

Exploring Computer Science With Lynx

 14

Spiral 2 90 - the angle is different..

Changing the procedure also creates different results:

to spiral :step :angle
if :step = 100 [stop]
forward :step right :angle
spiral :step + 10 :angle
end

to spiral :step :angle
if :angle = 360 [stop] Notice the change here.
forward :step right :angle
spiral :step :angle + 5 and here
end

to spiral :step :angle
if :angle = 720 [stop] ….and here
forward :step right :angle
spiral :step :angle + 5
end

Exploring Computer Science With Lynx

 15

And with some more exploration..	 	
	
	

	

Compare these two images:

Through an understanding and recognition of these patterns students will gain both experience and
tacit knowledge of this form of patterning that may provide new ways to understand our world
from the smallest forms of matter to the largest.

Transfer of Learning
 The learning explorations made possible through the type of programming described above
and the resulting development of computational thinking is of value to the learner in the immediate
context, but if these skills and ways of interacting with the world transfer to other domains, the
impact would be greatly amplified, leading to new patterns of thinking in different knowledge
domains and an innovative, inventive perspective on finding new solutions to old problems.

 Do these computational thinking skills transfer and positively impact learning in other
domains? Anecdotal evidence of this transfer seems to indicate it does.

Figure 1. A subprocedure for creating a square is shown within a superprocedure for creating a
flower. Procedures in MicroWorlds Ex can become part of larger procedures. The included ones are
called subprocedures and the enclosing programs are called superprocedures.
to square
repeat 4[forward 50 right 90]
end
to flower
repeat 18[square right 20]
end
(Peter Skillen, The Construction Zone)

Peter Skillen, Manager, former Social Media Professional Development with the YMCA of
Greater Toronto, provides the following story to provide evidence of transfer in a blog post entitled
Deep Understanding & the Issue of Transfer
(http://theconstructionzone.wordpress.com/2010/03/07/deep-understanding-the-issue-of- transfer/):

 Jeffrey, a Grade 2 student, made a most interesting leap from Logo to a completely different

Exploring Computer Science With Lynx

 16

domain one day.
	 	
 We were having a discussion inspired by the flight of the space shuttle piggybacked on a
jumbo jet. Our Grades 2/3 class had the opportunity to watch the flight. When we returned to the
classroom, a discussion of space naturally arose. One child asked if Earth was in space, and in
asking the question, she determined it must be, because it wasn’t sitting on anything. The
discussion continued until Jeffrey piped up.

 “You know . . . it’s sort of like Logo.” We stopped and looked at him curiously. “What do
you mean?” I asked him studiously.

 He replied, “Well, Earth is like a procedure. It’s like a subprocedure inside the solar system.
The solar system is the superprocedure. And the solar system is like a subprocedure in- side the
universe. The universe is like the superprocedure.”

 “Fascinating,” I said, then asked, “What’s the biggest superprocedure?”

 After a moment he replied, “I don’t know. I guess the universe.”

 Peter continues, “I was truly amazed at the generalization across domains that Jeffrey had
made. He clearly demonstrated significant transfer of a concept from his experiences with Logo to
an authentic event. Although Jeffrey’s illumination happened spontaneously, I learned that I could
play an important role in helping students to acquire [Gavriel] Salomon’s ‘effects of’ [technology]
by providing opportunities for them to look for these comparisons across subject areas.”

Opportunities to Explore
 There are few opportunities in most school curricula to explore recursive patterns (although
recursive patterns appear throughout nature and mathematics), develop and test algorithms, invent
solutions to student-generated questions, or see their world through a different lens. The
teacher/coach plays a key role in helping learners reflect on their thinking in order to bring about
these lasting changes in metacognition. And, programming with products such as MicroWorlds EX
and MicroWorlds JR create opportunities for even young children to explore big ideas as they
develop true 21st century thinking skills.

 “Computational thinking will be a fundamental skill used by everyone in the world. To
reading, writing, and arithmetic, lets add computational thinking to every child’s analytical
ability.” Jeannette Wing, Professor of Computer Science and Department Head, Computer Science
Department, Carnegie Mellon University http://www.youtube.com/watch?v=C2Pq4N-iE4I

 “The role of the teacher is to create the conditions for invention rather than provide ready-
made knowledge.” Seymour Papert, professor emeritus, MIT/MIT Media Lab.
	 	

Exploring Computer Science With Lynx

 17

Section 2: Using Lynx to Introduce Computer Science

For Students Aged 9 to 14

By Thomas Walsh Jr. PhD

Teacher and Author

Acknowledgments

 The project is a result of the guidance, direction, and encouragement provided by faculty
and major professor Dr. Ann Thompson at Iowa State University. Her inspiration to learn Logo
resulted in a dissertation topic on “The Implementation and Evaluation of a Sequential, Structured
Approach for Teaching LogoWriter to Classroom Teachers.” She also provided editorial expertise
to support publishing two journal articles from the dissertation on a literature review and Logo
staff development. Additional support is credited to Dr. Mi Ok C. Lee, graduate student colleague,
for her collaboration and use of the effective cognitive monitoring strategy for students.

 Further encouragement and direction is credited to teachers and administration in the Ames
Community Schools supporting implementation of the Logo curriculum during my teaching
career. A special recognition is given to third and sixth grade students who have provided insight
into their learning of the Logo language and development of progamming skills. Credit is awarded
to students and parents who provided permission for use of their projects for motiviating and
encouraging peers in learning programming skills. In addition, recognition is given to the Ames
Middle School math teachers for their engagement with students in learning Logo and their
contributing quotations for the text.

 Learning of more advanced coding procedures and use of tools is credited to teaching short
courses to upper elementary and middle school high ability students for the Early Outreach
Program at Iowa State University. My additional learning of coding skills along with use of tool
applications, especially in developing game projects, was developed as teacher scaffolding and
team instruction was provided to the students.

 A sincere thanks is given to Michael Quinn and Susan Einhorn, LCSI publishers, who have
provided the encouragement, editorial expertise, and leadership to promote this valuable
technology curriculum for students. Michael Quinn’s collaborative support in revision of the
manuscript has been instrumental and invaluable for improving the e-book evolving from use with
MicroworldsEX to the Lynx coding platform.

 It is the hope the e-book made available as a free downloadable publication will not only
provide support in developing student coding skills, through teacher scaffolding with mediated
instruction, but encourage enthusiasm in the learning of computer programming.

Exploring Computer Science With Lynx

 18

Teacher and Parent Reflections:

Microworlds is a rich, flexible learning environment. All of the strengths of the LOGO
programming language are included (and enhanced!). The original intent of Seymour Papert to
provide a Piagetian learning environment is well preserved here. The multiple window
programming environment makes experimentation easy and enjoyable. Even early-age students
can easily master important important programming ideas like command syntax, debugging,
subroutines/functions, variables, conditionals, and recursion. More importantly, problem solving
skills, mathematical reasoning, and analytic skills are all strengthened in a really fun, engaging
way. Kids love working with the program and sharing their ideas in a group setting!

Philip Wagner
Parent of two MicroWorlds EX users, aged 10
and 12
New York City

MicroWorlds (Logo) is equally engaging for both boys and girls. It is a valuable extension of
geometric concepts. It provides a nice progression from basic geometry to advanced concepts.

Stacey Culhane
Grade 6 Math Teacher

MicroWorlds (Logo) provides interaction of the kids with the technology and an introduction to
basic programming. It provides a concrete understanding of geometric figures primarily with
angles, length of lines, and perimeter. I see great value in the opportunity to be creative and
experiment with the technology.

Jeremie Knutson
Grade 6 Math Teacher

Provides students an opportunity to explore their ability to use technology in a positive way.
Forces them to think outside the box and be creative. Kids cruise through the program applications
with much success.

Craig Sengbusch
Grade 6 Resource Teacher

Exploring Computer Science With Lynx

 19

List of Figures*

Figure 1. Lynx layout features available from the Ecosystem activity and also available from
 other cards on the Lynx web site.
Figure 2. Window display example for repeat primitive when hovering over command.
Figure 3. A student gear project using setpensize, setpos, and fill commands.
Figure 4. Student swim goggle created with turtle primitives and repeat instructions.
Figure 5. Student smileyface program created with turtle primitives and repeat instructions.
Figure 6. Student arrow program using turtle commands with repeat instructions and added
 buttons.
Figure 7. Lynx student project showing a computer laptop program with comments explaining
 coding procedures.
Figure 8. A student modular clock program with circle and number subprocedures.
Figure 9. A student modular program with smiley, snake, and peace subprocedures.
Figure 10. A student modular neighborhood program with house, tree, window, circle, and square
 subprocedures.
Figure 11. A student modular broken key piano program with various position piano part
 subprocedures.
Figure 12. A student modular recursive named TX2 superprocedure calling g4 subprocedure.
Figure 13. A student modular recursive superprocedure, including random color changing
 command, calling shape subprocedures.
Figure 14. A student modular variable program procedures creating different shoe colors.
Figure 15. A student solar eclipse variable program with subprocedures.
Figure 16. A student modular outfit procedures with assigned variable shirt values.
Figure 17. A student modular crayons procedures with assigned variable values.
Figure 18. A student modular variable desk program using assigned variable values.
Figure 19. A student variable project clearing and creating medieval colored swords with
 buttons.
Figure 20. View of the Rundog program entered in the Lynx program.
Figure 21. An example of a Lynx race animation using a control buttom to adjust the speed of
 one Lynx.
Figure 22. View of window for creating a button for the Lynx race.
Figure 23. View of the tool window showing the slider name speed with minimum and
 maximum values.
Figure 24. Example of two Lynx racing at various speeds with the addition of a background
 shape.
Figure 25. Demonstration of the Meet program presenting a question in the Lynx program.
Figure 26. Demonstration of the Meet program displaying the final greeting in the Lynx program
 text box.
Figure 27. A student interactive words and lists project called Dudetalk.
Figure 28. Help User Guide link of project ideas
Figure 29. A green turtle pursuit to reach the four black turtles through a maze.

*The author was granted permission to display student examples used in the book.

Exploring Computer Science With Lynx

 20

Logo Coding for Essential Skills, Cognitive Development, and Learning Benefits Using
Teacher Mediated Scaffolding
Thomas Walsh Jr.

Introduction
 Learning computer languages while in school or study in computer science gives students the
skills needed to learn new computer languges easily (Bureau of Labor Statistics, 2020). One
computer language experience is coding in the Logo language. Empirical and meta-analysis
research studies support of teaching Logo programming in developing student cognitive problem-
solving skills has been documented. Using guided instruction with teacher-mediated scaffolding
has been found as an effective method in preparing students using the Logo code programming
language to create geometric graphic, animation, and gaming projects. Anecdotal benefits in
teaching coding are presented along with research on Logo’s contribution to student learning.
Research on potential benefits, using teacher-mediated or guided instruction is discussed along
with curriculum methodology for teacher delivery of Logo coding skills to students balancing
teacher direction with planned discovery. Teacher scaffolding strategies are presented including
cognitive monitoring. Anecodotal student outcome benefits in learning Logo coding along with
differential instruction are discussed. More research will be needed on specific teacher mediation
intervention techniques to facilitate successful transfer of problem-solving skills from Logo to
other domains including coding in other languages.

Current Demand for Programmers and Coders
 The teaching of coding has been gaining support based on media publications and advocates
from industry and nonprofits reporting the need for computer science programmers. Labor market
trends support the long-term demand for computer programmers who have knowledge of a variety
of programming language experiences. Computer literacy and knowledge of IT skills has become
regarded as an essential skill for students in the 21st century to develop problem solving skills.

 Support for teaching computer science or “computational thinking” and bringing coding to
the classroom has been reported in the press (Stross 2012, Naughton 2012 & Schmidt 2012).
Former software engineer and co-founder of the Holberton School of Software Engineering
Sylvain Kalache reports coding is important because it’s all around us:
 From the smartphone in our pocket, to the smart watch on our wrist, it’s
 also launching rockets in space or controlling our fridge,” says Kalache.
 All industries are disrupted by software and even if not all of us will
 become Software Engineers, all of us will be interacting with it, so it’s
 important to understand the foundations of it.” (Stenger, 2017).

 Computer-oriented jobs are the number one source of all new wages in the United States
and are in demand four times more than any other occupation according to Cameron Wilson, COO
and VP of Government Relations for Code.org (Wills, 2016). Wills reports computer science
majors are the number-one major hired by volume and the second highest post-undergraduate
earners. The Bureau of Labor Statistics (2020) reports employment of computer and information
technology is projected to grow 12 percent from 2018-2028, much faster than the average for all
occupations, with a seven percent decline in domestic (U.S.) computer programmers due to hiring
offshore. This decline may be due to the fact coding can be done anywhere with many

Exploring Computer Science With Lynx

 21

programmers working from their homes. The Bureau of Labor Statistics also reports programmers
who have knowledge of a variety of programming languages and keep up to date with the newest
coding tools will improve job prospects. Pisani (2018) reports there is currently a shortage of
computer engineers, and teaching students to code will ensure a pipeline of future talent to hire.

 Computer programming or coding it’s now regarded as an essential ability for 21st century
learners and is becoming a key component of many curriculums including instruction at the
primary school level. Singer (2017) reports Code.org, an industry-backed nonprofit, goal is to get
every public school in the United States to teach computer science. Code.org has helped to
persuade two-dozen states to change their education policies and laws while creating free
introductory coding lessons. Amazon has announced the Amazon Future Engineer program to pay
for summer camps, teacher training, and other initiatives to benefit kids and young adults form
low-income families to learning coding to spur students to study computer science (Pisani 2018).
Pisani reports Microsoft and Facebook, have also committed cash to bring coding to schools,
which could ultimately benefit the companies.

 Knowledge of basic IT skills will be a literacy requirement given the growth of technology.
Vlatko (2015) reports with this technology growth more countries are introducing programming as
part of their syllabus including European countries and Canada or introducing a digital curriculum
as part of the STEM initiative in Australia and Singapore. The CanCode Program is investing $60
million over two years from 2019 to 2021 to support coding and digital skill development to
Canadian youth (K-12) and provide teachers with professional development (CanCode, 2018). A
2016 Gallup report found that 40% of American schools now offer coding classes compared to just
25% a few years ago (Stenger, 2017).

 Anecdotal benefits of learning coding to develop critical thinking, on task persistence or
determination, problem-solving through debugging, processing skills, trial and error (Heggart
2014, Porter 2016 & William 2017) along with improved social skills and self-confidence (An
2017 & Morris 2017) has been documented.

Logo’s Potential Benefits
 Given these trends students will need to be prepared to learn programming code language,
preferably starting at an earlier age. Research on Logo’s contribution to student learning has
appeared in the literature during the last three decades. Seymour Papert and his colleagues at the
Massachusetts Institute of Technology (MIT) Artificial Intelligence Laboratory developed Logo in
the late 1960’s. Papert believes that Logo has no threshold and no ceiling, meaning that the
programming instruction can be used for applications with young children to secondary student,
across the curriculum.

 Research on potential benefits, using teacher-mediated or guided instruction, is
summarized as follows (Walsh, 1994):
 • Contributing to understanding of geometric concepts
 • Facilitating students’ understanding of geometric conceptualizations and thinking (e.g.,
 understanding of angle sizes and geometric shapes)
 • Increasing understanding of geometric transformation (i.e., symmetry, slides, and
 rotations)

Exploring Computer Science With Lynx

 22

 • Supporting the development of cognitive and metacognitive skills (e.g., planning skills)
 including measures of creativity
 • Improving problem solving in decomposition skills, error recognition, and feedback
 • Gains in divergent thinking, field dependence/independence (i.e., relationship of
 figures), and impulsivity/reflectivity.

 Some empirical research examining problem-solving using Logo have shown no significant
benefits or positive cognitive effects derived from Logo instruction. These studies have reported
limited if any effects in students’ ability in learning to solve equations, solution sets, mapping,
conditional logic, geometry, and planning skills. A study by Littlefield et. al. (1989) report
methodological considerations (clearly defining training conditions, documenting programming
mastery, and transfer measures) have not been considered to evaluate the claims that learning Logo
can enhance children’s general thinking skills. These authors also report the importance of
considering the method of teaching Logo and its effects on the development and transfer of general
thinking skills from the Logo environment to non-Logo problems. This includes consideration of:
 • The teacher’s approach.
 • When, where and how often the teacher intervenes.
 • Whether attempts are made to relate the Logo programming to other problem situations.
 • The number of students who share a computer at the same time.
 • The nature of the student interactions (Littlefield et. al. 1989, 335-336).

 The study of student learning providing structured and unstructured learning environments
found support for goal-oriented structure in the training program using mediated teacher
intervention. Littlefield et. al. report the features of mediation that apply directly to Logo
instruction include framing, which involves the act of relating specific sets of behaviors to a
broader framework of problem-solving (for example, breaking down Logo subprocedures into
manageable components). Another feature is bridging, which involves the act of relating processes
that occur within one context to similar processes occurring elsewhere (for example, using
mediation to relate right and left turn degrees to time on a clock).

 Further support for teacher mediation and scaffolding is provided in two meta-analyses
conducted by Alfieri et. al. (2011) using a sample of 164 studies examining the effects of
discovery learning practices. Most of these studies involved teaching domains in math, science,
problem-solving, and computer skills. The results of the first meta-analysis indicate that unassisted
discovery does not benefit learning. The analysis also found direct teaching is better than
unassisted discovery, provide learners with worked examples, and use of timely feedback. The
implications here suggest students benefit when provided with examples of Logo programs and
procedures as learning models. The study also reports that students may benefit from
individualized feedback on homework assignments with worked examples provided.

 The second meta-analyses suggest that teaching practices should employ scaffolding tasks
that require learners to explain their own ideas. These authors report that feedback, worked
examples, scaffolding, and elicited explanations are needed for learners to be redirected, to some
extent, when they are mis-constructing. Research supporting these student benefits are based on
providing more structured presentation of coding procedures with programming model examples

Exploring Computer Science With Lynx

 23

accompanied by teacher feedback, mediation and scaffolding of student learning (Littlefield et. al.
1989 & Alfriei et. al. 2011). Alfieri et. al. elaborate on this idea stating:

Feedback, scaffolding, and elicited explanations do so in more obvious ways through an
interaction with the instructor, but worked examples help lead learners through problem
sets in their entireties and perhaps help to promote accurate constructions as a result
(Alfriei et. al. 2011, 12).

The findings suggest that unassisted discovery does not benefit learners, whereas feedback,
worked examples, scaffolding, and elicited explanations do.

 Support in the research has suggested that Logo experiences using teacher-mediated
instructional practices produce positive near transfer (e.g., debugging Logo programs transfers to
map reading directions) and far transfer (i.e., to higher order thinking in another content subject
area). Other potential benefits of students working cooperatively in pairs have included more time
on-task in problem solving, correcting of program errors, and benefits in self-esteem social skills.

Microworlds Curriculum Using Teacher Scaffolding
 To prepare students for the future workplace and with research support for learning Logo
coding a curriculum program is needed. Exploring Computer Science with MicroworldsEX
(Walsh, 2013-2017) e-book was developed as a structured learning methodology of learning
activity lessons, with opportunities for discovery and exploration, to support student learning in a
“Microworlds” project-based environment to create geometric graphics, animation, and gaming
using the Logo programming language. The curriculum was developed from the author’s 30-year
Logo teaching experience with elementary and middle school regular and gifted education
students, along with dissertation research and journal publications (Walsh 1992-1993 & 1994)
supporting use of guided instruction for student learning programming code. Guided instruction
was found for the potential cognitive benefits for teaching Logo to be achieved by implementing
more carefully planned teacher-directed lessons balanced with student problem solving and
discovery learning using teacher-mediated scaffolding. In 2020 the e-book was revised for use
with the Lynx Logo platform titled Exploring Computer Science with Lynx.

 Working with students to develop their programming skills requires curriculum support
with handout information about turtle primitives, along with examples of programming
procedures. The teacher provides the scaffolding and guided questions to support student
development of workable program procedures. Students can approach programming using a top
down strategy (in other words, writing code directly into programs and testing outcomes in the
Command Center) or bottom up strategy (students test parts of the program in the Command
Center and paste pieces of workable code into program procedures). Teachers will find themselves
learning with the students as they discover innovative ways to use and apply program procedures.
Since teacher time is usually limited, students should learn to debug procedures, for instance, by
testing code line by line in the Command Center or working with student teams to solve their
problems.

Cognitive Monitoring
 The e-book includes a cognitive monitoring strategy has been used with grade three and
grade six students in developing a student guided programming project. The strategy (Lee, 1990)
involves having students draw the desired Logo graphic outcome by hand, decomposing the steps

Exploring Computer Science With Lynx

 24

to write a program, writing a plan, writing codes or subprocedures, testing and identifying errors,
and debugging the program. For example, a student wants to draw a house. The decomposed
shapes identified are a triangle on top of a square, and this is hand-drawn as the planned graphic.
The student writes the plan as a program with a roof (the triangle) and a square. The executed
program may be written as follows:
 to house
 repeat 3 [fd 100 rt 90]
 fd 100 rt 90 fd 100 rt 90
 rt 45 lt 45
 end
The executed graphic created with this program turns out not to be a house, which means the
student must debug the program and keep trying the new versions until the desired drawn graphic
outcome is achieved.

Student Reported Outcomes
 The author has found numerous benefits for teaching Logo to students representing regular
classroom education third and sixth graders as well as gifted sixth graders enrolled in an Extended
Learning Program (ELP). These students have reported benefits from learning the Logo language
to develop coding projects. These reports have been substantiated by teacher observation, staff
comments, and anecdotally collected information from students. Problem-solving skills noted
have included:
 • Using guessing and checking by breaking the program into smaller parts
 • Thinking in steps and order by repeating use of some commands over and over
 again
 • Experimenting and testing procedures in the Command Center and then writing these

into a program
 • Experimenting with angles and variable commands to make programs work
 • Making predictions, testing commands, and trying different programs
 • Using previous knowledge and examples to begin a project
 • Creating a mental picture and having the turtle start in one place.

 Student expressed benefits in learning Logo programming in support of math skills has
been found to include learning mathematical operations (for example, addition, subtraction,
multiplication, and division), measuring distance, working with angles and degrees, learning about
geometry and shapes, understanding coordinate graphing skills (for example, using the setpos
command), and developing programming procedure knowledge (for example, variable and
recursion). Other computer skills students have reported learning include keyboarding (typing
skills); copy, cut, and pasting; and learning how the computer works. Many students have stated
that Logo programming has improved their thinking skills, mental work, problem solving, and
planning skills. Some students have expressed that one has to be accurate, careful, and follow
directions when programming.

 These benefits in Logo coding have been substanciated by high ability students in grades
5/6 and 7/8 enrolled in the Early Outreach Program (EOP), formerly OPPTAG, a short course of
study at Iowa State University. Many of these students developed coding animation projects and
games. Some of these projects have included PS4 game controller, a button coding survey quiz,

Exploring Computer Science With Lynx

 25

pong game, coin flip program, moving chess board, rubric cube program, trivia game, and
animated dragon program. This information about the benefit of Logo coding was expressed
orally or reported on the class summative evaluation by the students.

Student Differentiation
 Teaching Logo coding with elementary and middle school students over the years reaffirms
that a broad student population with diverse levels of achievement, ages, gender, and cultural
diversity can learn a programming language. Students of different nationalities, non-English
language learners (ELL), and students identified with various exceptionalities (for example, TAG,
Integrated Services for Behavior, and a plan for students with disabilities) all develop the skills
necessary to successfully produce Logo coding projects. Logo coding experiences, using program
platforms like Lynx, provides “built in” differentiation for instruction in which the completed
projects can vary in complexity depending on student aptitude and interest. Both males and
females have been successful in this learning environment.

 Use of cognitive monitoring and instruction in debugging skills supports a diverse student
population. The cognitive monitoring strategy involves student planning skills, metacognitive
thinking, and problem solving. Some students realize their problem is too difficult or easy to
solve, and they then need to evaluate their initial graphic goal. Showing students how to debug
procedures, including pasting programs in the Command Center and pressing return after each
instruction line, is a helpful strategy for finding and fixing code errors. One high ability third
grade student developed an elaborate and lengthy coding procedures, then asked for help to find
the program error. The debugging strategy was particularly helpful for this student since his error
was on a procedure past 100 lines of coding and requiring lengthy instuctor time given 24 other
students in the class needed assistance with “hands in the air.” This third grader ended up
enrolling in math classes at the university at the end of his elementary year and entered as a student
in mathematics the following year.

Whlle Logo has been identified as a programming experience for students transiting from block or
picture coding prior to coding in more complex languages like Python and JavaScript (Logo
Computer Systems, Inc. 2020), for some students Lynx may be their first programming experience.
This may be especially true for younger elementary students. Given this reality students may need
instruction in some prepatory or concurent learning prior to coding with Logo. Teaching turtle
degree turns and request a visual turtle clock model while working on coding projects may be
needed. A turtle commander games provides students practice with right and left degree turns.
For example, in this activity the instructor stands in back of the room asking students to stand and
gives them one or a series of commands to turn a number of degrees (for example, right 90 left 45
or rt 90 lt 45 rt 120). Students can also be directed to move forward and backward a
number of turtle steps (using one ‘foot space’ increments), for example, forward 5 (fd 5). Other
support activities have included practice telling time using degrees along with flash cards of
frequently used coding commands. Collaborative teaching with math and resource teachers is
helpful when providing additional support for some students needing differentiated instruction.
The activities in the Lynx e-book curriculum provide activities in teaching degrees and learning
coding commands (flash cards) with tiered differentitated project ideas to accommodate diverse
students learners.

Exploring Computer Science With Lynx

 26

Conclusion
 The need to provide coding experiences to students has been discussed to promote
“computational thinking” and problem solving skills, which may support students in pursuing
computer science careers. Logo was discussed as a coding language with the potential to achieve
cognitive benefits. These benefits are given when more carefully planned teacher-directed lessons
are balanced with student problem solving and planned discovery using teacher-mediated
scaffolding. Support for more carefully planned, teacher-directed lessons during initial
introduction and learning of Logo skills is provided in the literature. Exploring Computer Science
with Lynx provides a curriculum methodology for teacher delivery of Logo coding skills to
students balancing teacher direction with planned discovery. Teachers will also need to serve as
facilitators to provide student support by scaffolding student questioning and directing independent
Logo programming exploration. More research will be needed on specific teacher mediation
intervention techniques, in addition to better understanding what is required to facilitate successful
transfer of problem-solving skills from Logo to other domains including coding in different
languages.

 The enduring impact of the curriculum has been evident when encountering former
students and the first question they ask is: Do you still teach with the turtle?

References
Alfieri, L., Brooks, P. J., and Aldrich, N. J. and Tenenbaum, H. R. (2011). “Does Discovery-
 Based Instruction Enhance Learning?” Journal of Educational Psychology 103 (1): 1-18.

An, E. (2017). “7 Benefits You’ll Notice When You Start Learning to Code.” CareerFoundry.
 Retrieved from: https://careerfoundry.com/en/blog/web-development/7-benefits-of-
 learning-to-code/

Bureau of Labor Statistics. (2020). U.S. Department of Labor, Occupational Outlook
 Handbook, Computer Programmers. Retrieved from: https://www.bls.gov/ooh/computer-
 and-information-technology/computer-programmers.htm

CanCode. (2018). Government of Canada. From: Innovation Science and Economic
 Development Canada. Retrieved from: https://www.ic.gc.ca/eic/site/121.nsf/eng/home

Heggart, K. (2014). “Coded for Success: The Benefits of Learning to Program.” Edutopia.
 Retrieved from: https://www.edutopia.org/discussion/coded-success-benefits-learning-
 program

Lee, M. (1990). Effects of guided Logo programming instruction on the development of cognitive

monitoring strategies among college students. Unpublished PhD dissertation, Iowa State
University.

Littlefield, J. Delclos, V. R., Bransford, J. D., Clayton, K. N. and Franks, J. J. (1989). Cognition
 and Instruction 6 (4): 331-366.

Exploring Computer Science With Lynx

 27

Logo Computer Systems Inc. (2020). Lynx [Computer software]. Retrieved from:
 https://lynxcoding.club/

Morris, S. (2017). “8 Ways Learning to Code Can Benefit You Right Now.” Skillcrush.
 Retrieved from: https://skillcrush.com/2017/01/30/learn-to-code-benefits/

Naughton, J. (2012). “Why All Our Kids Should Be Taught How to Code.” The Guardian.
 Retrieved from: http://www.guardian.co.uk/education/2012/mar/31/why-kids-should-be-
 taught-code

Pisani, J. (2018). Amazon’s new goal: Teach 10 million kids a year to code. AP News.
 Retrieved from: https://www.apnews.com/be91d86ed0ce44f3a4a09eddd20593f7

Porter, J. (2016). “4 Benefits of Learning Programming at a Young Age.” ELearning for Kids.
 Retrieved from: https://elearningindustry.com/4-benefits-learning-programming-at-a-
 young-age-2

Schmidt, E. (2012). “Britain’s Economy Will Thrive if Computing Becomes Child’s Play.” The
 Guardian. Retrieved from: http://www.guardian.co.uk/commentisfree/2012/apr/08/eric-
 schmidt-improve-computer-education

Singer, N. (2017). Education Disrupted How Silicon Valley Pushed Coding into American
 Classrooms. New York Times. Retrieved from:
 https://www.nytimes.com/2017/06/27/technology/education-partovi-computer-science-
 coding-apple-microsoft.html

Stenger, M. (2017). Coding in Education: Why It’s Important and How It’s Being
 Implemented. informed Open Colleges. Retrieved from:
 https://www.opencolleges.edu.au/informed/features/coding-education-important-
 implemented/

Stross, R. (2012). “Computer Science for the Rest of Us.” The New York Times. Retrieved
 from: http://www.nytimes.com/2012/04/01/business/computer-science-for-non-majors-
 takes-many-forms.html

Vlatko, N. (2015). JAX Magazine. The countries introducing coding into the curriculum.
 Retrieved from: https://jaxenter.com/the-countries-introducing-coding-into-the-
 curriculum-120815.html

Walsh, T. (1992-93). “The Implementation and Evaluation of a Sequential, Structured Approach
 for Teaching LogoWriter to Classroom Teachers” Journal of Educational Technology
 Systems (Vol. 21 No. 4).

Walsh, T. (1994). “Facilitating Logo’s Potential Using Teacher-Mediated Delivery of
 Instruction: A Literature Review. Journal of Research on Computing in Education (Vol.
 26 No. 3).

Exploring Computer Science With Lynx

 28

Walsh, T. (2013-2017). Exploring Computer Science with Microworlds EX. Montreal Quebec,
 Canada: Logo Computer Systems, Inc. (LCSI).

William, J. (2017). “10 Surprising Skills Kids Learn Through Coding.” We Are Teachers.

Retrieved from: https://www.weareteachers.com/skills-learn-coding/

Wills, B. (2016). The United States of Coding. New America Weekly Edition 132. Retrieved
 from: https://www.newamerica.org/weekly/edition-132/united-states-coding/

Author Biography
 Thomas Walsh Jr. was a classroom teacher at the elementary level for over 35 years,
primarily with the Ames Community Schools (ACS). Six years were served as an instructor for
high ability T/G grade six students in the ACS Extended Learning Program (ELP) facilitating
project work in mathematics including coding instruction in Logo programming. For five years
served as an adjunct instructor to high ability elementary and middle school students at Iowa State
University’s Early Outreach Program (EOP), formerly OPPTAG, providing instruction in Logo
coding for developing turtle graphics and basic gaming program procedures. Further information
about the author’s other international teaching opportunities and publications can be found on the
web page @ https://sites.google.com/site/tomwalshjrhome/

 In 2018 Walsh participated in the CanCode government initiative providing workshop
training to teachers in Vancouver, Canada using MicroworldsEX and MicroworldsJr. Workshops
and presentations on Logo coding have been conducted at international math and gifted education
conferences.

 Early publications on Logo programming, based on dissertation research, was conducted
and supported teaching of coding to students and teachers using the original Logo version,
LogoWriter, and MicroworldsEX for the last 30 years. Hopefully, opportunity to teach Logo
instruction using the Lynx program will be provided to enthusiastic coder learners in the future!

Exploring Computer Science With Lynx

 29

Teacher Lesson Plans

Lesson 1: Introduction to Lynx Procedures and Turtle Commands

Objective 1: Given a demonstration of the Lynx platform layout, students will launch a Work
Area (Page) with adding a turtle object for typing primitives in the Command Center.

Objective 2: Students will type primitives in the Command Center to draw a geometric shape
graphic with the turtle.

Time Period: Three or more 60-minute periods

Programming Guide Sections:
1. Navigating the Lynx Platform
2. Getting Started with Lynx Basic Techniques to Get You Started (Resource Materials User
 Guide)
3. Drawing Turtle Graphics
4. Changing Pensize, Graphic Color and the Fill Command
5. Appendix Resources: Turtle Primitive Flashcard Cut Outs, Turtle Primitives, Turtle Degrees
 and Turtle Degree Clock
6. Lynx Observation Form (Lessons 1-3)

Procedures:
1. With a Smartboard or LCD projector, demonstrate how to begin the Lynx program and hatch

one turtle in the Work Area (Page). Refer students to Navigating the Lynx Platform section of
the guide while highlighting the iconic symbols as well as the Procedure Pane, Clipart Pane,
Project Tree and Command Center.

2. Optional: Assign students to complete the Turtle Degree Clock activity. If practice is needed
learning degrees complete the Turtle Degrees activity pages.

3. Introduce the turtle primitives using the Turtle Primitive Flashcards and post for display.
4. Play “Turtle Commander”, directing students to move forward (fd) and back (bk) shoe size

distances (for example, fd 2 is two foot length steps forward). Direct students to practice turns
by commanding rt 90, lt 45, rt 180, rt 270, and so on.

5. Refer students to read the sections on Drawing Turtle Graphics, and Changing Pensize, Graphic
Color, and the Fill Command for information on turtle primitives and ideas (for example, Turtle
Hint!).

6. Provide opportunity for students to practice typing in the Command Center and take notes, if
needed, with the Turtle Primitives activity sheet.

7. Lynx Program Project - Colors: Assign students to select a turtle activity project based on their
 interest and ability. Provide the Turtle Degrees Clock to students requesting support in learning
 turtle turns using degrees.

Evaluation: Drawing with the turtle in creating one or more geometric shape graphics using color.
Provide student feedback using the Lynx Observation Form.

Exploring Computer Science With Lynx

 30

Lesson 2: The Repeat Command and Geometric Shapes

Objective 1: Students will learn and use the repeat command to create geometric graphic
shapes.

Objective 2: Students will apply the repeat procedure to create geometric shapes based on
learning the relationship between number of degree turns and the number of repeats.

Time Period: Two or more 60-minute periods

Programming Guide Sections:
1. Repeat It!
2. Appendix Resources: Turtle Primitive Flashcard Cut Outs, Turtle Shapes, Turtle Degree Clock,

Repeat Predictions, and A-Mazing
3. Lynx Observation Form (Lessons 1-3)

Procedures:
1. With a Smart Board or LCD projector, demonstrate the following procedure as follows:
 fd 100
 rt 90
 fd 100
 rt 90
 fd 100
 rt 90
 fd 100
 rt 90

Pose student questions: Do you see a pattern repeating in the list of commands? How many
times does the pattern repeat? Then write the following procedure:

 repeat 4 [fd 100 rt 90]
Pose additional questions: Will the turtle draw the same thing using the list of commands as
with the repeat instruction? What geometric shape will the turtle draw? Check to see if
students make a connection between the list of commands and the repeat instruction. Refer
students to guide section for additional information or review the section titled Repeat It!

2. Lynx Program Project - Repeat: Assign students to select a turtle activity project based on their
interest and ability. Provide a turtle clock to students requesting support in learning turtle turns
and degrees.

3. Direct students to work in cooperative pairs to complete the Turtle Shapes activity. Ask
students to tell the turtle rule or relationship between the number of turns (rt or lt) and the
repeat number.
Rule: Repeat number times the rt or lt input number = 360 degrees or 360 divided by the
repeat number = number of rt or lt degrees.

4. Optional: Assign students to complete the Repeat Predictions and/or A-Mazing activity.

Evaluation: Completion of one or more geometric shape graphics using the repeat procedure.
Provide student project feedback using the Lynx Observation Form.

Exploring Computer Science With Lynx

 31

Lesson 3: Introducing Turtle Programs

Objective 1: Students will learn how to write a program using turtle commands (primitives) to
create a realistic graphic with geometric features, add a button, and an additional page for a
project.

Objective 2: Students will follow the cognitive monitoring planning procedure to plan a graphic,
decompose the shapes, write a plan, write program procedures, test the graphic result, draw the
initial graphic outcome, and debug the program to work as planned.

Time Period: Three or more 60-minute periods

Programming Guide Sections:
1. Introducing Turtle Programs
2. Getting Started with Lynx Basic Techniques to Get You Started (Resource Materials User
 Guide)
3. Appendix Resources: Turtle Primitive Flashcard Cutouts, Cognitive Monitoring Planning,
 Turtle Degree Clock, and Changing Procedures and Predicting Skills
4. Lynx Observation Form (Lessons 1-3)

Procedures:
1. Review the turtle primitives using the Turtle Primitive Flashcards and post for display.
2. With a Smart Board or LCD projector, demonstrate how to write a turtle program on the

Procedure Pane and run it in the Command Center for display on a Work Space (Page).
3. Show how to add a button on the Work Space (Page) to run a procedure. Demonstrate adding
 a button by selecting from the plus “+” symbol, label the button with a name (for example,
 box), and then type or select the program name (for example, square) in the On click space.
 Press the button to see how it works.
4. Demonstrate how to add a new page to a project. Point out the left and right arrows (< >)
 located at the top of the Procedures Pane, for typing the name of the project, can be clicked to
 switch pages after choosing Page in the “+” menu. Review clicking on the Procedures Pane
 side triangle arrow to display Procedures and Add a tab option for entering additional
 program coding procedures.
5. Refer students to the Introducing Turtle Programs section of the guide with example figures
 for additional information about adding buttons. Getting Started with Lynx Basic Techniques
 to Get You Started provides ideas for adding buttons and pages.
6. Lynx Program Project - Procedures: Assign students to select a programming project based on

their interest and ability.
7. Direct students to work individually or in cooperative pairs to plan a turtle graphic using

cognitive monitoring procedures. Refer to the example glasses project and debugging steps
shown in the appendix.

8. Optional: Assign students to complete the Changing Procedures and Predicting Skills activity.

Evaluation: Student writes a Lynx program and successfully executes (runs) the turtle program
name showing the turtle graphic outcome. Provide student project feedback using the Lynx
Observation Form.

Exploring Computer Science With Lynx

 32

Lesson 4: Creating Modular and Recursive Programs

Objective 1: Students will learn how to write a modular program using turtle primitives to create a
realistic graphic with geometric features for a coding project.

Objective 2: Students will learn how to write a recursive program using turtle primitives to create
a realistic graphic with geometric features.

Time Period: Three or more 60-minute periods

Programming Guide Sections:
1. Creating Modular Programs
2. Simple Logo Recursion
3. Lynx Rubric Evaluation (Lessons 4-8)

Procedures:
1. Direct students to read the Creating Modular Programs section of the guide and study the

example program procedures and figures. Pose questions: How is a basic turtle program
different from a modular program?

2. Study the program examples in the guide identifying which programs are subprocedures for
modular program superprocedures.

3. Lynx Program Project – Modular Procedures: Assign students to select a modular program
project based on their interest and ability.

4. Direct students to read the Simple Logo Recursion section of the guide and study the example
figures for additional information and procedures. Discuss and identify which programs in the
guide show modular procedures and recursion.

5. Provide opportunity for students to write and run recursive programs.
6. Lynx Program Project – Modular Recursive Procedures: Assign students to select a recursion

and/or modular program project based on their interest and ability.

Evaluation: Student writes a Lynx program and successfully executes the turtle recursion and/or
modular program showing the turtle graphic outcome. Begin to provide feedback to students about
their projects using the Lynx Rubric Evaluation.

Exploring Computer Science With Lynx

 33

Lesson 5: Assigning Variables in Logo Programming

Objective 1: Students learn how to assign variables in subprocedures and superprocedures for a
coding project.

Objective 2: Students will learn how to write a modular program that contains variables, using
turtle primitives to create a realistic graphic with geometric features.

Time Period: Six or more 60-minute periods

Programming Guide Sections:
1. Assigning Variables in Logo Programming
2. Recursive Variable Modular Procedures in Logo Programming
3. Lynx Rubric Evaluation (Lessons 4-8)

Procedures:
1. Direct students to read the Assigning Variables in Logo Programming section of the guide and

study the example program procedures and figures. Pose questions: What is a variable and
what is the purpose for use in a program? Where are variables written in the program? How do
you test or execute the program to see if the variable works?

2. Study the program examples in the guide identifying the purpose of the variables shown on the
procedure lines.

3. Lynx Variable Program Project: Assign students to select a variable program project based on
their interest and ability.

4. Direct students to read Recursive Variable Modular Procedures in the Logo Programming
section of the guide and study the example program procedures and figures. Pose questions:
What are some procedures than can be used to control recursive variable programs? How can
you write a modular variable program? How is a variable coding project run with values
(numbers) typed in the Command Center (for example, shoe 45 78 13) different from a
variable program with assigned values?

5. Project Development Idea: Suggest students write a modular program without variables first to
see if the procedures run without errors. Next, have students add one or more variables to the
program procedures.

6. Lynx Modular Variable (Recursion) Project: Assign students to select a modular variable
program project activity based on their interest and ability.

Evaluation: Student develops a modular program coding project with variable(s) and successfully
runs the program procedures. The project variables can have assigned values in the program
procedures. The Lynx Rubric Evaluation provides feedback to the student for their projects.

Exploring Computer Science With Lynx

 34

Lesson 6: Animating Turtle Shapes with a Slider and Adding Features

Objective 1: Students will write an animated program code, using turtle shapes, to display moving
graphics started with a button tool.

Objective 2: Students will write a code to animate shapes moving at varying speeds using a slider
or selected program procedures (for example, forever with speed primitives).

Objective 3: Students will add an additional feature to their project (for example, a background,
sound or music and/or a clickable turtle shape).

Time Period: Three or more 60-minute periods

Programming Guide Sections:
1. Animating Turtle Shapes
2. Additional Features for Project Development
3. Getting Started with Lynx Basic Techniques to Get You Started and List of Lynx Primitives
 (Resource Materials User Guides)
4. Appendix Resources: Multiple Turtles
5. Lynx Rubric Evaluation (Lessons 4-8)

Procedures:
1. Assign students to practice the commands and procedures for the Multiple Turtles activity.

Guide students to record outcomes on the lines provided.
2. Guide students to read and study the pages in the guide on Animating Turtle Shapes, Adding a
 Button and Slider for Animation of Shapes, Animation Procedures with Varying Shape Speed
 and Added Background, and Additional Features for Project Development.
3. Demonstrate the animated Rundog program and how to select shapes, as shown in the section on

Animating Turtle Shapes. Pose the following challenge: Predict what is the purpose of the
setsh and wait commands?

4. Discuss the Lynxrace program example in the guide on Adding a Button and Slider for
Animation of Shapes. Pose the following question: What is the purpose of the forever
primitive?

5. Lynx Animation Program Project: Direct students to work individually or in cooperative pairs to
create an animation project with selected shapes created with Lynx tools (i.e., buttons and
slider). Encourage students to create a stopall button to stop moving turtles on the screen.

6. Provide resource access to the List of Lynx Primitives in the Help- User Guides.

Evaluation: Students write an animated shapes program, with varying speeds including additional
project features, and successfully executes the project for demonstration. The Lynx Rubric
Evaluation provides feedback to the student for their projects.

Exploring Computer Science With Lynx

 35

Lesson 7: Going Further: Words and Lists in Logo Procedures

Objective 1: Students will learn commands on how to manipulate words and lists to enter
character strings and program procedures for showing outcomes.

Objective 2: Student tests lists and numbers programs to create their own interactive program
procedures.

Time Period: Three or more 60-minute periods

Programming Guide Sections:
1. Going Further: Words and Lists in Logo Procedures
2. Interactive Lists and Numbers Programs
3. Getting Started with Lynx Basic Techniques to Get You Started and List of Lynx Primitives
 (Resource Materials User Guides)
4. Appendix Resources: A Turtle Calculator Application (Optional)
5. Lynx Rubric Evaluation (Lessons 4-8)

Procedures:
1. Direct students to read Words and Lists in Logo Procedures and subtitle sections of the guide

studying the example procedures ahead of time.
2. Give students opportunity to test the procedure examples on the computer, providing guided

questioning and teacher scaffolding when needed. Alternately, the teacher may prefer to
demonstrate the program procedures on the computer to the class for viewing, questions, and
discussion. Add a text box from the “+” sign to a Work Area (Page) to display character strings
(for example, words and sentences).

3. Lynx Interactive Lists and Numbers Program Project: Assign students to select a program
project based on their interest and ability. Provide differentiation for some students capable of
integrating the words and lists (e.g., conversation) code into an existing animation project using
programming procedures.

4. Optional: Assign students to complete A Turtle Calculator Application activity.

Evaluation: Students writes an interactive words and list program that will successfully execute
showing conversation dialogue or output numbers in a textbox. The Lynx Rubric Evaluation
provides continued feedback to the student for their projects.

Exploring Computer Science With Lynx

 36

Lesson 8: Applying Graphics, Animation, and Interactive List Procedures for Developing
Games

Objective 1: Students will develop an interactive game using Logo coding procedures and
demonstrate the project to the class. Coding ideas can be developed from program procedure
project examples (for example, Quick, Theme Based Activity Cards) incorporated into a newly
created game.

Objective 2: Students follow the directions provided in the Lynx User Guides to create a game
project.

Time Period: Three or more 60-minute periods

Programming Guide Sections:
1. Applying Graphics, Animation and Interactive List Procedures for Developing Games
2. Lynx website at https://lynxcoding.club/ access game programs for review
3. Help tool at Lynx website at https://lynxcoding.club/ access User Guides steps to create games
4. Getting Started with Lynx Basic Techniques to Get You Started and List of Lynx Primitives
 (Resource Materials User Guides)
5. Lynx Rubric Evaluation (Lessons 4-8)

Procedures:
1. Direct students to read Applying Graphics, Animation and Interactive List Procedures for

Developing Games.
2. Demonstrate access to the Lynx web site resources for students to review examples of

interactive games with access to coding procedures.
3. Show students at the Lynx web site how to find and pdf download from the User Guides Quick,

Theme Based Activity Cards or Project Plans to create games.
4. Direct students as needed with their game project development to the references Getting
 Started with Lynx Basic Techniques to Get You Started and List of Lynx Primitives
 (Resource Materials User Guides)

Evaluation: Student develop an interactive game using developed project coding ideas or
directions provided in the Lynx User Guides. The Lynx Rubric Evaluation provides feedback to
the student for their projects.

Exploring Computer Science With Lynx

 37

Teacher Activities Answer Guide and Resources

Turtle Degrees Answer Key
Appendix pages 109-110

Part I.
	 1)	rt 120 or lt 240 2)	rt 210 or lt 150		
	 3)	rt 300	or	lt 60		 	 4)	rt 30	or	lt 330		
	 5)	rt 90	or	lt 270		 	 6)	rt 270	or	lt 90		
	 7)	rt	180	or lt 180		 	 8)	rt 0	or	lt 360		
	 9)	rt 60	or	lt 300		 	 10)	rt 150	or	lt 210		
	 11)	rt 240	or	lt 120		 12)	rt 330	or	lt 30	
Part II.
 1) 3:00 2) 4:00
 3) 2:00 4) 10:00
 5) 6:00 6) 9:00
 7) 6:00 8) 7:00
 9) 4:00 10) 1:00
 11) 1:00 12) 10:00
 13) 8:00 14) 12:00
 15) 12:00 16) 5:00
 17) 7:00 18) 11:00
 19) 5:00 20) 11:00
 21) 6:00 22) 11:00
Part III.
 1) 3:00 2) 9:00
 3) 5:00 4) 9:00
 5) 11:00 6) 6:00
 7) 12:00 8) 12:00
 9) 3:00
 10) 12:00
 11) 6:00
 12) 7:00
Part IV.
 1) 90 degrees
 2) 150 degrees
 3) Four
 4) Answers will vary
 5) Answers will vary (e.g., picture frame, poster, file cabinent, etc. objects with 90
 degree angles)

Exploring Computer Science With Lynx

 38

Lynx Turtle Shapes Answer Guide

DIRECTIONS: For each shape fill in the table using the headings provided. Use the turtle clock, if
needed. When finished answer the question at the bottom of the page.

Shape Number
of Sides

Number of
Degrees for
Each Turn

Repeat Statement

Triangle

3

120

Repeat 3 [fd 100 rt 120]

Quadrilateral

4

90

Repeat 4 [fd 100 rt 90]

Pentagon

5

72

Repeat 5 [fd 100 rt 72]

Hexagon

6

60

Repeat 6 [fd 100 rt 60]

Septagon

7

51.43

Repeat 7 [fd 100 rt 51.5]

Octagon

8

45

Repeat 8 [fd 100 rt 45]

Nonagon

9

40

Repeat 9 [fd 100 rt 40]

Decagon

10

36

Repeat 10 [fd 100 rt 36]

Circle

infinite

1 or 360

Repeat 360 [fd 1 rt 1]

*Other?

vary

vary

Repeat procedure will vary

Question: What is the turtle rule or relationship between the number of turns (rt or lt) and repeat
number?

	 Number of turns (sides) x Number of degrees = 360 degrees
	

Exploring Computer Science With Lynx

 39

Lynx Observation Form (Lessons 1-3)

Name ___ Date _______________________

Directions: The observation may be used during student project development (i.e., mini-
conference) or as a post evaluation. Checked (√) items are skills demonstrated by the student with
the Lynx program.

Graphic or Project Title:
__

Skills: Creating Graphic Designs Demonstrated In: √
1. Utilizing and controlling drawing and turning commands
2. Adding a button to a page to link pages and run procedures
3. Creating geometric shapes using a repeat procedure
4. Writing and successfully running a program procedure
5. Other Skill (if any):

Brief Comments and Suggestions: ___

--- cut --

Lynx Observation Form (Lessons 1-3)

Name ___ Date _______________________

Directions: The observation may be used during student project development (i.e., mini-
conference) or as a post evaluation. Checked (√) items are skills demonstrated by the student with
the Lynx program.

Graphic or Project Title:
__

Skills: Creating Graphic Designs Demonstrated In: √
1. Utilizing and controlling drawing and turning commands
2. Adding a button to a page to link pages and run procedures
3. Creating geometric shapes using a repeat procedure
4. Writing and successfully running a program procedure
5. Other Skill (if any):

Brief Comments and Suggestions: ___

Exploring Computer Science With Lynx

 40

Lynx Rubric Evaluation (Lessons 4-8)

Name ___ Date _______________________

Directions: The rubric may be used during student project development (i.e., mini-conference) or
as a post evaluation. Classroom peers may use the rubric to evaluate student project. Circle ahead
of time, before making classroom copies, the programming focus areas (e.g., graphic modular
programming using buttons or words & lists programming with graphic animation uisng a
textbox).

Graphic or Project Title: ___

Rating: Exceeds
Expectations

Meets Expectations Needs Redesign

Graphic
Creativity Originality and

balance shown
Developing design
features

Graphic needs
development

Detail/Sophistication Displays detail in
design

Some details evident Simplistic graphic
display

Programming
Graphic geometric
complexity,
programming skill
applications, and
problem-solving
elements

Graphic contains
complex geometric
construction requiring
problem-solving
programming skills

Graphic shows
geometry skills using
basic programming
skills and problem-
solving

Graphic needs further
geometry
development and use
of programming skills

Application of
Subprocedure
Commmands

Highly developed
subprocedures and
turtle commands

Subprocedures and
commands utilized

Few or no
subprocedures are
evident

Utilizes Programming
Method (modular,
recursion, variables,
and/or animation)

Sophisticated
application of
programming
procedures

Developing
programming
procedures

Lacks clearly defined
programming
procedures

Program Effectively
Runs and Operates

Efficiently runs Most procedures run Procedure errors and
debugging needed

Other Program
Features

Tools: Buttons, Music,
Hyperlink, Shapes
and/or Slider

Creatively applies Utilized in project Not effectively
utilized

Textbox with Words
and Lists Use

Effectively applies Utilized in project Not effectively
utilized

Other (identify):

Supports and
enhances project

Utilized in project Not effectively
utilized

Overall Project Rating (Circle): Exceeds Expectations Meets Expectations Needs Redesign

Comments: __ (use back, if needed)

Exploring Computer Science With Lynx

 41

	
Turtle Primitive Flashcard Cut Outs*
 *Option: Post cards on a bulletin board for student reference

Drawing and Movement Commands

Pd

Pu

Pe

Exploring Computer Science With Lynx

 42

Home

Setpos [x y]

Drawing Commands

Fd n

Exploring Computer Science With Lynx

 43

Bk n

Setc n

Fill

Exploring Computer Science With Lynx

 44

Setbg n

Setpensize n

Repeat n [fd n rt n]
Repeat n [bk n lt n]

Exploring Computer Science With Lynx

 45

Turning Commands

Rt n

Lt n

Seth n

Exploring Computer Science With Lynx

 46

Turtle Viewing and Changing Shape

Ht / St

Setsh n

Cleaning and Erasing Commands

Cg

Exploring Computer Science With Lynx

 47

Ct

Turtle Reporters

Show
Heading

Show
Pensize

Exploring Computer Science With Lynx

 48

Show
Pos

Random n

Exploring Computer Science With Lynx

 49

Syntax, Punctuation, and Quotes with Conditionals

Print ‘Word’

Print [A list of words]

Print (78 + 321 + 55) / 4

Exploring Computer Science With Lynx

 50

Print :Word

*Inputs word in a program procedure

if :size > n [stop]

*if [this is true] [then do this action]

Exploring Computer Science With Lynx

 51

Section 3: Introducing Lynx in Eight Lessons

Navigating the Lynx Platform

Layout Windows Design
 To get started using Lynx go to the website at https://lynxcoding.club/. Read the cover
page followed by viewing the video The Missing LINK for an overview of the program. Select the
button CREATE A LYNX PROJECT to begin free limited access to the program (note Lynx Use
Policy on the next page). You will see a screen like the following shown in Figure 1.

 A view of the Lynx working environment shows three main window spaces. The bottom
window called the Command Center is used for experimenting with turtle commands (for
example, Logo primitives like fd 100). The program-coding procedures are typed in the
Procedure Pane side window (for example, the program named laptop). The main window
called the Work Area (Page) is where you can hatch turtles for display of graphics and animated
projects created by the program procedures. Refer to figure 1 to view the layout of the Lynx
working environment and access to the tool icons.

Figure 1. Lynx layout features available from the Ecosystem activity and also from other cards on the Lynx web site.

 Descriptions of the layout features is provided in the following bullet points. Notice along
the Procedure Pane are symbols to support the development of program projects. A short
explanation of the icon features include:
 • Up arrow cloud: To upload and save a project to the cloud (Login required)
 • Plus sign “+”: For adding a turtle, text box, button, slider, hyperlink, sound, page and
 simple clipart to a project.

Exploring Computer Science With Lynx

 52

 • Down arrow cloud: To retrieve and import samples of existing and new projects.
 • Keyboard: Return to typing program codes in the procedures window.
 • House icon: Residence for adding shapes and sample clipart from the “+” sign.
 • Project tree icon: Place to see and manage pages with objects for a project.
 • Gear: Window display for selecting font and mode or level of learning.
 • Circle left arrow: Permits exiting a page.
 • Book icon: Displays Lynx Learner Mode Help window of turtle primitive commands
 and some technical information.
 • HELP! Button: Quick answers for common problems by entering search for help
 questions.
Also shown are some icons displayed next to the Command Center window used for testing turtle
primitives and developing program procedures. These symbols include:
 • Curve left arrow: Go back to the previous command or undo a turtle procedure move.
 • Square inside circle: A stop button to end a continued turtle movement activity (for
 example, a recursive or animation program).
 • Keyboard: Return to typing program procedures in the command center window.
 • Insect icon: For use in developing coding programs using variables.
Left and right arrows (< >) located at the top of the Procedures Pane, for typing the name of the
project, can be clicked to switch pages after chosing Page in the “+” menu. Click on the
Procedures Pane side triangle arrow to display Procedures and Add a tab option for entering
additional program coding procedures. Refer to page 85 for additional information about adding
pages to a project. As pages are added the project tree is useful to see and manage objects for a
project. It is useful for tablet users when right-clicking is not available and to manage objects
located in different pages in one location. It is also helpful to find a turtle or change a text box
from invisible to visible. Refer to Getting Started with Lynx page 33 for further instructions on
managing the project tree.

 The Help tool at the top of the Lynx website has a pull down window to select User
Guides. The downloadable pdf documents provide a layout graphic page displaying the symbols
and tool features on a Lynx page. For example, refer to the document on Ecosystem on page 5 to
view the Layout features.

User Guide Support: Getting Started and List of Primitives
 Additional information about the Lynx program to support navigation and program project
development is provided in the guide Getting Started with Lynx Basic Techniques to Get You
Started. Download the guide at the Help pull down window. The Help pull down window is
displayed at the top to the Lynx website page. Scroll down to Resource Materials and select the
Getting Started link for a pdf copy of the text. References to the guide will be made in the e-book
to provide support in use of the Lynx program.

 Students appreciate reference access to Logo commands. Access the List of Lynx
Primitives user guide from the Help tool at the top of the Lynx website. Pull down window to
select User Guides. Then scroll down the page and select the link List of Lynx Primitives from the
Resource Materials. The downloadable pdf documents provides an alphabetical list of Logo
primitive commands and reports the turtle movements with examples. When typing the name of a
primitive in the Command Center or in the Procedures Pane you can hover your mouse pointer

Exploring Computer Science With Lynx

 53

over the name of the command for a brief description and example. For example, typing repeat
displays the following window shown in Figure 2.
	

	
Figure 2. Window display example for repeat primitive when hovering over command.

Lynx	User	Policy
 Lynx can be used for free without creating an account limiting usage of all the features of
the program including saving projects. To register with Lynx to gain full program access select the
Help pull down window. Remember the Help pull down window is displayed at the top to the
website page. A screen shot of a project can be taken by pressing Control-Command keys to open
a window and selecting Take a Screenshot. Coding program procedures can be copied and pasted
to another file (example: Word document) for viewing or reference. User Guides for pdf
download information is provided by selecting the following links:
 • How to Create a Free Trial Account
 • How to Convert a Free Trial Account to Permanent Individual
 • How to Create and Manage a School Account
Other links are also shown on the page for viewing.

Saving Projects and Sharing with Friends
 Refer to Getting Started with Lynx pages 30-32 for instructions on saving and retrieving
your project and sharing your project with friends. The authors of the publication remind users
there is no autosave with the Lynx program so it is important to save your project as your are
working on it before leaving the project editor. If a student sees a red dot beside the Up-to-the-
Cloud icon, it is time to save! It is not uncommon for students to lose projects after investing much
time when working on program procedures.

	
	

	

Exploring Computer Science With Lynx

 54

Drawing Turtle Graphics

 To begin Lynx to create graphics, with a turtle in the middle of the workspace (in the
‘home’ position), hatch a turtle by selecting from the “+” symbol on the menu side bar. Type
turtle instructions in the Command Center window (at the lower part of the screen) and the turtle
draws on the page.

 Words built into Logo's vocabulary are called primitives. Turtle primitives are not case
sensitive and may be typed in the command center in capitals or lower case letters. Some of the
words, or primitives, that can be typed in the Command Center to move the turtle are forward,
back, right, left, pd, and pu. Forward or its short form, fd, moves the turtle ahead
the number of units (turtle steps) typed. Fd 50 moves the turtle forward 50 turtle steps and, if
you’ve put the turtle’s pen down (by typing pd), it will draw a line 50 units long. Back (shortform
is bk) makes the turtle move backwards. Bk 100 moves the turtle backward and, if the pen is down,
draws a line 100 units long.

 The right (rt) and left (lt) commands turn the turtle the number of degrees typed
after the command. Examples of these commands are:

 rt 90 The turtle turns right 90 degrees, making a corner.
 lt 90 The turtle turns left 90 degrees, making a corner in the
 other direction.

rt 180 The turtle turns around right 180 degrees and is ready to move the opposite
direction.

lt 45 The turtle turns left 45 degrees and is ready to draw at
 an angle.

Fd, bk, rt, and lt all require input – a number that provides additional information. Always
put a space after the Logo commands fd, bk, rt, and lt and then type a number. Press the
Return/Enter key after typing a command to instruct Lynx to run the command.

 Other useful commands are cg (clear graphics) and cc (clear commands), which clears the
Command Center. The cg command clears all the graphics and puts the turtle in the center of the
screen, pointing up (in the ‘home’ position). Type cc to clear the Command Center. This erases
all the commands typed into the Command Center.

 There are other commands that can be typed into the Command Center and used to draw
pictures with the turtle. To lift the turtle's pen and have the turtle move on the screen and not draw
a line, type pu (for pen up). For example, to move the turtle forward 20 turtle steps and not
draw a line, type pu fd 20. To put the turtle's pen down again for drawing, type pd (for pen
down). For example, to draw a line 20 units long, type pd fd 20.

Additional Primitive Drawing Commands
 Using many rt and lt commands may cause confusion – it will be hard to tell in which
direction the turtle is going or heading at the end of all the instructions. The instruction show
heading gets Lynx to report the turtle's heading in degrees from 0 to 359. When the turtle is
pointing straight up, show heading reports 0. In the Command Center, type:

cg rt 45 show heading

Exploring Computer Science With Lynx

 55

Press Return/Enter and the number 45 is printed. To turn the turtle back to facing the top of the
screen, type home in the Command Center and press Return/Enter.

 The command seth (set heading) with an input gets the turtle to turn to a specific
direction based on compass positions. Seth 180 always turns the turtle so that it points to the
bottom of the screen. Seth 90 always turns the turtle so that it points to the right of the screen. Seth
270 always turns the turtle so that it points to the left of the screen.

 Using the pu command with setpos (set position) is an good way to move the turtle to
different screen locations when starting a project. The input to setpos is always two numbers in
square brackets. The numbers in the brackets are x and y screen coordinates. For example, the
center of the screen (the ‘home’ position) is [0 0] so setpos [0 0] positions the turtle in the
center of the screen. The reporter pos reports the turtle’s position (its x and y coordinates). To
have the position printed in the Command Center, type: show pos. Remember setpos needs two
numbers in the square brackets (not parentheses) as input for it to work.

 Another interesting command is pe (for pen erase), which can be used to erase a line. For
example, draw a line using pd fd 100. Next, type in the Command Center: pe bk 50. This
erases half the line. When using any of the pen commands (pe, pu, pd) you need to use a
command that moves the turtle, such as fd or bk, and a number to see their effects. For example,
try:

pd fd 100
pe bk 100

 Other commands you may want to try are ht (hide turtle) and st (show turtle). To draw
lines with an invisible turtle, type ht before drawing. To see the turtle again type st. The ht
command can also be used with the pu command to move the invisible turtle around the screen
without seeing it. The ht command is sometimes used at the end of a project when you do not
want the turtle to be part of the scene.

 Learn turtle command functions when typing Logo primitives in the command center. To
quickly get a short definition and example of each primitive in a message box, let your cursor
hover over the primitive in the command center or Procedures Pane.

 For a more detailed explanation, select the book symbol on the menu bar to learn more
about turtle primitives. Select HELP! to search for information about procedures and Logo
primitives. Access the List of Lynx Primitive user guide from the Help tool on the Lynx website at
https://lynxcoding.club/. Also refer to Getting Started with Lynx pages 30-32 for instructions on
saving and retrieving your project and sharing your project with friends.

Turtle Hint!
A quick way to move the turtle around the screen without drawing lines is to click (with the mouse
or pad) on the turtle and, with the mouse button held down, drag it any position in the workspace.

Exploring Computer Science With Lynx

 56

Turtle Hint!
After adding a turtle from the “+” object on to a Work Area (Page) remember to type pd (for pen
down) in the command center first, in order for the turtle to draw. The turtle will continue to draw
using the command unless you type pe (for pen erase) or pu (for pen up). After using the pe or pu
commands remember to type pd again.

Turtle Hint!
A technique for saving time when typing in the Command Center is to use the up and down arrow
keys. These keys scroll the commands in the Command Center up and down. By placing the
cursor over an instruction you used earlier and pressing Return/Enter, the turtle will repeat that
instruction. This is helpful because it means you don’t have to retype commands. For example, if
st pd bk 100 has been typed into the Command Center and you want to repeat the command,
press the up arrow key to move the cursor back to the original line, then press the Return/Enter
key. Now, you’ve drawn the line an additional 100 units backward. You can also use the cc
(clear commands) to erase all primitives typed in the Command Center.

Lynx Program Project – Turtle Commands

Turtle Activity 1
Predict the graphic each set of commands will make and then try the following instructions. Was
your prediction correct?

1. Cg pd fd 50 rt 90 fd 50 rt 90 fd 50 rt 90 fd 50
2. Cg pd lt 90 bk 90 rt 45 fd 60 lt 90 fd 60
3. Cg setpos [-200 150] pd rt 45 fd 1000 lt 90 fd 1000
4. Cg pd rt 90 fd 20 pu fd 20 pd fd 20 pu fd 20 pd fd 20 pu fd 20

pd fd 20 pu fd 20 pd
5. Cg pd fd 100 pe bk 20 rt 90 pd fd 30 bk 60

Turtle Activity 2
Make geometric shapes (polygons) with these primitives: fd, bk, rt, and lt. Create two or
more of the following shapes: a square, rectangle, triangle, hexagon, or octagon.

Turtle Activity 3
Make one of the following graphics with the turtle primitive commands: flag, house, rocket, or
star. In addition, create a street scene using the pu and pd primitive commands. Hints &
Suggestions: The pu and pd commands are helpful in creating the dashed center line on a road.
Create buildings with the turtle primitive commands.

Changing Pensize, Graphic Color, and the Fill Command

 The width of the turtle’s pensize can be changed using the setpensize command
followed by a number from 1 (standard) to 30 (thickest). The color of the turtle and it's pen can be
changed by typing the command setc (set color) with a color number as input. For example setc
105 will change the turtle and it’s pen color to blue. setc “blue will do the same. Setc 9
returns the turtle color to black.

Exploring Computer Science With Lynx

 57

 The color of the workspace background can be changed by typing setbg (set background)
with a color number as input. For example, setbg 65 will change the background to green.
Setc ‘green’ or setc “green will do the same. Setbg 0 will return the workspace to its
original clear appearance. A report of the last background color used is made by typing Show Bg
(background).

 To see the colors available on Lynx, select the book icon on the menu bar to open the
window and then select Other Stuff. On the side menu select the link under Lynx Colors (Lynx
color names and numbers). A window will open showing a chart of Lynx Color Names and
Numbers with information and procedure code examples.

 Another command that will make the graphic pictures more interesting is the fill
command. This command is used to color in or fill in a shape. Try this program to fill in a square:
 cg
 pd
 repeat 4 [fd 100 rt 90]

pu
rt 45 fd 30
pd setc 67
fill

 Sometimes it gets confusing knowing the pen color of the turtle, especially when drawing
over filled graphics and backgrounds. Show color reports a number telling the color number of
the turtle or filled object. Refer to the example of a student gear project using pensize, color, and
fill command (Figure 3).

Figure 3. A student gear project using setpensize, setpos, and fill commands.

Exploring Computer Science With Lynx

 58

Turtle Hint!
When you use fill to color-in a graphic on the screen, the turtle is the same color as the
background and is difficult to see. Try setting the turtle to a different color, for example setc 9,
in order to see the now black turtle inside the colored graphic.

Lynx Program Project - Colors

Turtle Activity 1
Add color using the fill and setc commands to a selected previous activity.

Turtle Activity 2
Copy the gear turtle commands below, which are displayed in Figure 2. Create you own gear
project by making changes to the turtle procedures.
 pu setpos [200 0]
 pd setc 9
 setpensize 10
 Fd 87 Rt 975 Fd 23 Rt 64
 Fd 87 Rt 975 Fd 23 Rt 64
 Fd 87 Rt 975 Fd 23 Rt 64
 Fd 87 Rt 975 Fd 23 Rt 64
 Fd 87 Rt 975 Fd 23 Rt 64
 Fd 87 Rt 975 Fd 23 Rt 64
 Fd 87 Rt 975 Fd 23 Rt 64
 Fd 87 Rt 975 Fd 23 Rt 64
 Fd 87 Rt 975 Fd 23 Rt 64
 pu setpos [100 0]
 pd setc 29 fill
 ht

Turtle Activity 3
Create polygon shapes with the turtle using different colored lines for drawing and filling the
shapes.

Repeat It!

What Does Repeat Do?
 Repeat is a powerful Logo turtle primitive command. The repeat command is used in
combination with other Logo primitives. Repeat allows the user to combine groups of commands
into a one line procedure. Compare the two columns of commands below. What groups of
commands are repeating in the first column? How many times do these commands repeat? What
will the repeat procedure make?
 Primitives Repeat Instruction
 fd 50 rt 90 repeat 4[fd 50 rt 90]
 fd 50 rt 90

fd 50 rt 90

Exploring Computer Science With Lynx

 59

 fd 50 rt 90
Do you see the relationship between the number of times the pairs of commands fd 50 rt 90
are repeating in the list of primitives and the number four placed after the repeat statement. You
can save time using the repeat command to create shapes. In the example above, you can see both
a long and a short way to draw a square. Would repeat 4 [bk 50 lt 90] produce a similar
sized square?

 Use the repeat command to create interesting shapes and effects. Begin by typing repeat
number_of_times, the open square bracket, instructions, and the close square bracket. For
example, pd repeat 2 [fd 250 rt 90 fd 150 rt 90] will make a rectangle 250 by 150
units long. Thus, fd 250 and fd 150 draw the lines for the length and width of the rectangle,
and rt 90 instructs the turtle to make a 90-degree right turn. Note the use of the repeat command in
the picture of the swim goggles (Figure 4).

 By changing the inputs, amazing pictures can result. The repeat command can be used to
create many polygons and enhanced polyspiral graphics and star shapes. Try: repeat 5 [fd 75
rt 144].

	
Figure 4. Student swim goggle created with turtle primitives and repeat instructions. (Refer to appendix for
program procedures.)

Lynx Program Project - Repeat

Turtle Activity 1
Use the repeat command to create different kinds of polygons including shapes with equal and
noncongruent sides.

Exploring Computer Science With Lynx

 60

Turtle Activity 2
Use repeat for making turtle graphics using a combination of shapes. For example create a
house, arrow, rocket, or other object.

Introducing Turtle Programs

 Coding in Logo is a process of teaching the turtle new words or commands. You have
been using ‘built-in’ commands (for example,	fd,	rt,	and	repeat) that are already part of the
Lynx Logo vocabulary. These ‘built-in’ words are called primitives. An important feature of the
Logo language is the ability to teach the turtle new commands and words. Once you define a new
word, it becomes part of Logo’s working vocabulary and can be used in your project just like a
primitive.

 You teach Logo new words by defining them in terms of words Logo already knows.
Word definitions are called procedures. For example, to ‘teach’ Logo the new command
SQUARE, you would type the following procedure in the Procedures Tab in the right side
window. Your procedure would look like this:

to SQUARE
 repeat 4 [fd 40 rt 90]

end
First, make sure you have a turtle on the page and that its pen is down. Type the word SQUARE in
the Command Center to test the program. When you type SQUARE in the Command Center, the
turtle should draw a square (as long as you have correctly typed primitive commands and used
spaces correctly). When you name and save the project (for example, MySquare), the procedures
are also saved. SQUARE will be part of Logo’s vocabulary when you open the MySquare
project, just like all the ‘built-in’ Logo primitives.

 There are three steps to writing a procedure:
	 to square		 	 	 This naming Line must always begin with ‘to’.

repeat 4[fd	40 rt 90]		 Instruction line(s).	
end 		 	 	 	 End line.		

Always press Return/Enter after ‘end’. Examples of students programs are shown with the
smileyface and arrow procedures (Figures 5 and 6).

 If you want all turtles and buttons to use a Logo procedures write it in the Procedures Pane.
Always begin the procedure with the word to followed by a procedure name. The word to with a
name lets Logo know that this is the beginning of a procedure. The name must be a single word,
with no spaces in it, and cannot be the same name as any of the Logo primitives. The procedure
must always finish with the word ‘end’ and you must always press Return/Enter after the word.
This tells Logo that you have finished writing the procedure. You will eventually write lengthy
programs in the Procedure Pane to create a turtle graphic like the smiley face project (Figure 5).

Exploring Computer Science With Lynx

 61

Figure 5. Student smileyface program created with turtle primitives and repeat instructions. (Refer to appendix for
program procedures.)

Turtle Hint!
Type the pd (for pen down) command as the first instruction after the naming line in your program
procedure. This will allow the graphic to be drawn without having to type pd in the command
center each time.

Turtle Hint!
Learn turtle command functions by hovering the cursor over the primitive in the procedures
panel to see a short descripton of the primitive and an example on how it can be used. Remember
you can also select the book symbol or use the HELP! question button on the tool bar to find out
more about using turtle commands and procedures.
	
Turtle Hint!
Recommended: Help yourself, and others, by adding comments in the Procedure Pane before and
between programs. You can use words to describe what the programming procedure does. This is
good programming practice for self-evaluation and sharing with others. Suggested to add
comments starting with a semi-column (;). Note comments written for Figure 5.

Getting Inside the Turtle’s Backpack to Run Programs on a Click
 If you only want the turtle to use a program procedure write it in that turtle’s backpack. To
get inside the turtle’s backpack right click on a turtle to view the Name window showing t1
standing for turtle one. Select the program name (for example, square) in the On click field. Click

Exploring Computer Science With Lynx

 62

on the Apply button to close the window. Click on the turtle several times. What did you make?
Refer to page 84 for additional information about a clickable turtle.

Adding a Button to Your Lynx Project
 Add a button to your project that will run the program procedures. Begin by chosing
Button from the plus “+” menu. Right-click on the button to open the dialogue box and name the
button (for example, the name of your program procedure). For the On click drop down menu
select the name of the procedure you have created (for example arrow) and then click on the
Apply button. If you decide to make another button and the name of the program procedure is not
displayed in the button window then select New . . . on the On Click drop down menu. The
button2_click program will then appear at the bottom of the Procedures pane. After the
button2_click naming line write the turtle command to run the desired code outcome (for example
cg). The Clear Page button procedure is shown as follows:
 to button2_click
 cg
 end
Examine Figure 6 to view the Arrow and Clear Page buttons added to the page. The arrow button
was clicked several times to create more than one arrow graphic design.

 Refer to Getting Started with Lynx page 15 for further instructions on adding and using
buttons. Remember to access the publication from the Help tool at the top of the Lynx website at
https://lynxcoding.club/ and pull down window to select User Guides. Then scroll down the page
and select the link Getting Started with Lynx. You can also access the List of Lynx Primitives user
guide from the Resource Materials to view or pdf download.

Figure 6. Student arrow program using turtle commands with repeat instructions and added buttons. . (Refer to
appendix for program procedures.)

Exploring Computer Science With Lynx

 63

Turtle Hint!
Which programming technique will you use to create turtle projects?
1. Top-Down – If you would prefer to go directly to the Procedures Pane in the left side window
and type the turtle procedures and then test the new procedure in the Command Center, then you
are a top-down programmer.
2. Bottom-Up – If you would rather type turtle primitives, one-by-one, in the Command Center,
and, once you get a result that you like, copy and paste them into a procedure that you created in
the Procedures Pane. Return to the Command Center and test your procedure. If you prefer this
method then you are a bottom-up programmer.
3. Combination – Some computer programmers use both top-down and bottom-up techniques.

Turtle Hint!
Develop planning skills to mentally think and record comments on the graphic you are attempting
to create using the turtle commands for programming procedures. Use the following questions to
guide your thinking:
1. What is the final object or project idea you want the turtle to draw?
2. What shapes and repeat procedures will be needed to create this graphic?
3. Will turtle primitives be needed to add color and fill-in shapes?
4. Which turtle commands will be needed to move and position the turtle before typing additional
procedures?
5. How can the turtle primitives or procedures be grouped together to build each piece of the
drawing to most effectively create your final graphic?

Turtle Hint!
How do I fix and debug my Logo procedure so it will run effectively?
After testing your Logo procedure you may have received one or more error messages. Use the
error messages as a guide to edit and change your program in order to create the desired graphic.
To make these changes simply copy and paste your program procedures instruction lines (not the
‘to’ line or ‘end’ line) from the Procedures Pane to the Command Center to test each line one by
one. Press the Return/Enter key after each line of commands to look for the program error. Once
you find the error, edit (or repaste) the instructions into the Procedures Pane. Test the procedure
again to see if it works, otherwise debug again.

Lynx Program Project - Procedures

Turtle Activity 1
Create or use Logo commands to write your own turtle procedure showing an object of interest to
you. Type the name of the procedure in the Command Center to see if it works as planned. After
testing the program successfully add a button to run the program.

Turtle Activity 2
Select from the Appendix a coding project Figure 3 (SwimGoggles), 4 (smileyface) and/or 5
(arrow) to copy and run in the Command Center. Debug and add program procedures to enhance
the project.

Exploring Computer Science With Lynx

 64

Turtle Activity 3
Write more than one Logo program using repeat instructions to create a procedure that draws an
object of interest. Type the name of the procedure in the Command Center to test your program.
If the program runs effectively you may be finished, if not use the error message to help debug the
program. Add two or more buttons to the program coding procedures.

Creating Modular Programs

 Modular programming involves breaking a procedure into parts. The following program
shows how to teach Logo the new commands SQUARE and TRIANGLE, typed in the Procedures
Tab at the side of the page. Make sure the Pen is Down.

to SQUARE
repeat 4 [fd 100 rt 90]
end
to TRIANGLE
repeat 3 [fd 100 rt 120]
end
to HOUSE
SQUARE
fd 100 rt 30
TRIANGLE
end
	

 When you teach and tell Logo to SQUARE or TRIANGLE, the turtle draws these shapes.
SQUARE and TRIANGLE are subprocedures when they are used in another procedure, in this
case, HOUSE. A procedure that uses subprocedures, like the HOUSE procedure, is called a
superprocedure. In this example, the subprocedures SQUARE and TRIANGLE are used to make a
HOUSE. Type HOUSE in the Command Center. and the turtle draws a house. Writing programs
with subprocedures makes it possible to create more powerful and complex programs, programs
that can even instruct the turtle to draw an entire scene with a one-word command.

 Study the following modular program that uses the square and triangle subprocedures:

to GuessPic
square
triangle
end

Is the GuessPic procedure a superprocedure? What graphic will this program make? Did you
guess an envelope?

 Here is another example of modular programs:

to pent
repeat 5 [fd 20 rt 72]
end
to hex
repeat 6 [fd 20 rt 60]
end

Exploring Computer Science With Lynx

 65

to soccer
pent
lt 120
hex
repeat 4 [lt 132 fd 20 rt 60 hex]
end

Which programs are subprocedures and what is the name of the superprocedure in this modular
program?

 Remember to write comments about your procedures to explain and keep track of your
coding programs as they become more advanced. You should start comments on the first line or
between changing program lines with a semi-colon (;). For example, refer to Figure 7.

Figure 7. Lynx student project showing a computer laptop program with comments explaining coding procedures. .
(Refer to appendix for program procedures.)

 A variety of coding strategies can be used to write a modular program. As project graphics
develop in greater detail and sophistication students will find it helpful to write smaller sized
program subprocedures to use in a super modular program. The smaller coded programs make it
easier to find program bugs or coding errors when testing super program procedures to run the
entire graphic project. Examples of student modular progrom procedures are provided (Figures 8-
11).

Exploring Computer Science With Lynx

 66

Figure 8. A student modular clock program with circle and number subprocedures. (Program code view in appendix.)

Figure 9. A student modular program with smiley, snake, and peace subprocedures. . (Refer to appendix for
program procedures.)

Exploring Computer Science With Lynx

 67

Figure 10. A student modular neighborhood program with house, tree, window, circle, and square subprocedures.
(Refer to appendix for program procedures.)

Figure 11. A student modular broken key piano program with various position piano part subprocedures. . (Refer to
appendix for program procedures.)

Lynx Program Project – Modular Procedures	

Turtle Activity 1
Create or use Logo procedures from previous projects to develop a modular program. Type the
name of the program in the Command Center to test and run effectively without any error
messages.

Exploring Computer Science With Lynx

 68

Turtle Activity 2
Select from the Appendix a coding project Figure 8 (clock), 9 (everything), 10
(neighborhood), and/or 11 (piano) to copy and run in the Command Center. Debug and add
program procedures to enhance the project.

Turtle Activity 3
Create two or more turtle procedures and use these names to create an additional super procedure.
Type the name of the super procedure in the Command Center to test and run properly without any
error messages.
	
Simple Logo Recursion	

 A procedure that calls itself as a subprocedure in its final line is using recursion and is
called a recursive procedure. You already have seen that in a modular program, a procedure can
include calls to any other procedures defined in the project’s Procedures Pane on the left side of
the page. This means that superprocedures can call subprocedures defined in the project’s
Procedures Pane, for example, the superprocedure house calls the subprocedures triangle and
square programs. Not only is it possible to call other procedures in a program, it is also possible
to call the procedure itself. When this happens the program indefinitely repeats, as in this example
of a recursive procedure:
 to TRIANGLE Naming line
 repeat 3 [fd 40 rt 120]
 rt 45
 TRIANGLE Name called again
 end

 In the above example, the turtle draws a triangle (the repeat instruction), turns right 45
degrees and then starts the triangle procedure again, drawing a triangle, then turning right 45
degrees, then starting the triangle procedure again, and so on. The program continues to call
triangle until you press the Stop icon located just to the left of the Command Center.

 Study the following Logo procedure examples:

to box
repeat 4 [fd 75 rt 90]
end
to frame
repeat 4 [box rt 90]
end
to hex
repeat 6 [fd 50 rt 60]
rt 10
hex
end
to figure
repeat 4 [fd 20 rt 90] fd 30
figure
end

Exploring Computer Science With Lynx

 69

Which procedures are modular and which show recursion? How do they work differently? The
box program is a simple program while the frame program is modular. The hex and figure
programs are recursive.

 Student developing modular recursive program procedures can result in planned or
unanticipated graphic outcomes. Some examples of student projects are a TX2 and shapes
superprocedures (Figure 12 and 13).

Turtle Hint!
Suggest students follow these steps in developing a modular recursive program:
1. Write the program subprocedures (in other words, one or more separate procedures).
2. Develop the superprocedure using the names of the subprocedures in the program.
3. Add the superprocedure name at the bottom of the procedure, just before the end line.
4. Test the modular recursive procedure by typing the procedure name (for example, TX2 or

shapes) in the Command Center to see if the program runs correctly.

Figure 12. A student modular recursive named TX2 superprocedure calling g4 subprocedure. (Refer to appendix
for program procedures.)

Exploring Computer Science With Lynx

 70

Figure 13. A student modular recursive superprocedure, including random color changing command, calling shape
subprocedures. (Refer to appendix for program procedures.)

Lynx Program Project - Modular Recursive Procedures

Turtle Activity 1
Create or use Logo commands to write your own turtle graphics procedure and then add the
procedure name again to show recursion. Type the name of the procedure in the Command Center
to test and run properly without any error messages.

Turtle Activity 2
Select from the Appendix a coding project Figure 12 (TX2), and/or 13 (shapes) to copy and run in
the Command Center. Debug and add program procedures to enhance the project.

Turtle Activity 3
Write a modular recursive program. Type the name of the superprocedure in the Command Center
to test and run properly the subprocedures without any error messages.

Assigning Variables in Logo Programming

 Naming things is an important function within Logo. Naming happens when teaching
Logo new words to be used as procedures. To explain how variables work begin with the
following procedure to draw a square with the pen down (pd):

to SQUARE
repeat 4 [fd 50 rt 90]
end

Exploring Computer Science With Lynx

 71

Type SQUARE in the Command Center and the turtle draws a square with sides of 50 units. You
can create more powerful and flexible procedures by using variables. A variable is a name that
stands for some value. To show a name is a variable and not, for example, a procedure name, you
need to type a colon (:) in front of it. To show a procedure is using variables, the variable name is
typed next to the procedure name in the naming line.

 By using a colon and a variable name, for example (:SIDE or :S) with the square
procedure, you can draw squares of different sizes using just one procedure. For example: 			 to SQUARE :SIDE or to SQUARE :S
 repeat 4[fd :SIDE Rt 90] repeat 4 [fd :S rt 90]
 end end
Now the SQUARE procedure needs an input, just like some built-in Logo commands (such as bk
and lt) need inputs when you use them. Type SQUARE 100 and SQUARE 25 in the Command
Center. What happens? Try using another number after SQUARE and see what happens. The same
SQUARE procedure draws all these different sized squares.

 When creating a procedure with a variable, remember to use a variable name (for example,
SIDE or S) after the colon in the procedure naming line and at the appropriate place in the
instruction line(s). It is Logo tradition to pronounce the colon as ‘dots’. For example, :SIDE is
pronounced as ‘dots SIDE’. The dots used in :SIDE mean ‘the value associated with the name
SIDE.’ Remember to not put a space between the dots and the variable name in your program
procedure.

 For example, to create a triangle of different sizes, type a procedure like this in the
Procedures Page:
	 to Triangle :S
 repeat 3[fd :S rt 90]
 end
By typing triangle number in the Command Center, different size triangles can be created (for
example, Triangle 10 or Triangle 48). As seen in the Triangle procedure example, the
variable is added on the naming line and in the appropriate instruction lines of the procedure. An
important rule to remember when using variables in Logo is:

The variable name must be shown in both the procedure naming line and the command line
in the procedure that uses the variable.

 More than one variable name can be assigned in Logo procedures. Each variable name
must be preceded by its own set of dots. For example, the following two-input variable procedure
can be used to draw rectangles of different sizes and shapes:
									to RECTANGLE :HEIGHT :LENGTH
 fd :HEIGHT

rt 90
fd :LENGTH
rt 90
fd :HEIGHT
rt 90
fd :LENGTH
rt 90
end

Exploring Computer Science With Lynx

 72

If RECTANGLE 100 10 were typed in the command center, the turtle would make a long narrow
rectangle. RECTANGLE 100 100 would result in a square rectangle with equal sides.

 Variables written in Logo procedures, as shown above, are local variables. A local variable
is a variable whose value is in memory only while a procedure is running. This means the program
will run if this procedure name is typed in the Command Center and the procedure is written in the
project’s Procedures Page. Stated another way, the program will run in this project only.

 Students will develop a variable program and use this with other program procedures to
create turtle graphics. Used in this manner they are creating variable modular programming
procedures. An example of a modular program with variables is a shoe coding project (Figure 14).
Variables are used in the procedures for changing the shoe base, shoe color, and background.

Figure 14. A student modular variable program procedures creating different shoe colors. (Refer to appendix for
program procedures.)

 You can create a modular variable program and then assign values to the commands in the
program procedures. For example, a solar eclipse variable modular program with assigned
variable values or numbers used in the program procedures was developed by a student (Figure
14). A circle variable program (to circle: size) was written to create the solar planet shapes
with an assigned value of circle 2 in the blackcircle subprocedure. In the solareclipse super
program another circle assigned value was added in coding procedure (circle 2). Note the
program procedures provides text after the semicolons to explain the coding project. Refer to
these student modular variable programs for project ideas (Figures 15-18).

Exploring Computer Science With Lynx

 73

Figure 15. A student solar eclipse variable program with subprocedures. (Refer to appendix for program
procedures.)

	

Figure 16. A student modular outfit procedures with assigned variable shirt values. (Refer to appendix for program
procedures.)

Exploring Computer Science With Lynx

 74

	
Figure 17. A student modular crayons procedures with assigned variable values. (Refer to appendix for program
procedures.)

Figure 18. A student modular variable desk program using assigned variable values. (Refer to appendix for
program procedures.)

Exploring Computer Science With Lynx

 75

	
Figure 19. A student variable project clearing and creating medieval colored swords with buttons. (Refer to
appendix for program procedures.)

Turtle Hint!
Suggest students follow these steps when developing a variable modular procedure:
• Write the program subprocedures (in other words, one or more separate turtle programs) first

testing if the modular program works without added variables.
• Next, plan to add variable procedures deciding what parts of the program to allow for

changing or program flexibility.
• Develop the superprocedure and make sure each subprocedure includes a value for each of the

the defined variable names (for example, Tri 25).
• Add the superprocedure variable name(s) after the procedure name in the naming line and in

the appropriate command lines in the procedure.
• Test the variable modular program by typing the procedure name and variable value(s)
• (for example, House 67) in the Command Center to see if the program runs correctly.

5 An alternative plan is to use similar variable names for the super- and subprocedures. For

examples, study the modular superprocedure Design that uses the Poly subprocedure with
variables:
 to Design :R :D to Poly :R :D
 repeat 5 [Poly :R :D Fd :D Lt 72] repeat :R [fd :D rt 360/:R]
 end end

Exploring Computer Science With Lynx

 76

Lynx Variable Program Project

Turtle Activity 1
Create a turtle program and include at least one variable in the procedure. Type the name of the
procedure, and a value for the variable, in the Command Center to test and run properly without
any error messages.

Turtle Activity 2
Type the following variable procedures and test in the Command Center to see the various sizes of
the objects. Modify and change the procedures to create your own idea. Which one is a modular
variable superprocedure?
to MyBox :Size to House :Size to Tri: Size
fd :Size MyBox :Size repeat 3 [fd :Size rt 120]
rt 90 fd :Size Rt 30 end
fd :Size tri :Size
rt 90 end
fd :Size
rt 90
fd :Size
end

Turtle Activity 3
Select from the Appendix a coding project Figure 7 (laptop) Figure 14 (shoe), 15
(solareclipse), 16 (outfit), 17 (crayons), 18 (desk), and/or 19 (swords) to copy and run
in the Command Center. Debug and add program procedures to enhance the project.

Turtle Activity 4
Write a variable modular procedure with more than one variable. Type the name of the
superprocedure in the Command Center to test and effectively run the program subprocedures
without any error messages.

Recursive Variable Modular Procedures in Logo Programming

 We have discussed that a repeating program that defines a procedure that includes a call to
itself in the final program line is called recursion. You already known that the steps of a
procedure can include calls to any other procedures in modular programs. This means that
superprocedures can call subprocedures that are defined in the Procedures Pane on the side of a
page, like when triangle and square procedures are called (or used) in the superprocedure
house. Since it is possible to call other procedures in a program it is also possible to call a
procedure line itself (in other words, the name used in the naming line of the procedure). When
this happens the program indefinitely repeats. The following is an example of a repeating
program:
	 Naming Line	 	 to TRIANGLE
 repeat 3 [fd 40 rt 120]
 rt 45
	 Name Called Again	 TRIANGLE
 End

Exploring Computer Science With Lynx

 77

In the above example, the turtle draws a triangle, turns right 45 degrees, and then draws another
triangle. The procedure continues to call triangle (in other words, make another triangle,
turn right 45 degrees, and call TRIANGLE) until the user stops the recursion or repeating action.

 What if we decided to continue the repeating recursive action and add variables to the
recursive program? An example of a recursive program that adds variables to the TRIANGLE
procedure above is:

to TRIANGLE :SIZE
repeat 3 [fd :SIZE rt 120]
TRIANGLE :SIZE + 5
end

To run this program, you need to type a number after TRIANGLE in the Command Center.
Remember, this triangle recursive program has dots and a variable name called SIZE (:SIZE).
Because a variable is used in this procedure, a number must be typed after the procedure name in
the Command Center (for example, TRIANGLE 15). The procedure then uses the number
assigned to size after the fd command and, because TRIANGLE :SIZE is called in the last line of
the procedure, it repeats (recurses), making the triangle over and over again. Adding the number 5
after :SIZE means the value of :SIZE increases each time TRIANGLE repeats, causing the size of
the triangle to increase (the triangle’s sides become 5 units or turtle steps larger). Once you type
the procedure name and a number for the variable size (for example, TRIANGLE 15) in the
Command Center, the graphic is drawn repeatedly on the screen.

 A recursive program can be stopped using an if statement. The if statement, called a
conditional expression or statement, can be added to the program. The if statement has the form:

if [this is true] [then do this action].
The action is always a list of one or more instructions enclosed in square brackets. For example, to
stop the TRIANGLE program from recursing on the screen, an if statement can be written in the
program:

to TRIANGLE :SIZE
if :SIZE > 50 [stop]
repeat 3 [fd :SIZE rt 120]
TRIANGLE :SIZE + 5
end

In the above TRIANGLE program, Logo will draw the graphic over and over again until the value
of SIZE equals 50. For example, if you type TRIANGLE 5 in the Command Center, each time the
procedure runs the value of :SIZE increases (5 + 5 = 10, 10 + 5= 15, 15 + 5 = 20, and so on) and
the if statement checks the value to see if it is greater than 50. If it is, the procedure (and drawing)
stops.

 In addition to the variable (:SIZE), the predicate (>), the number (50) limiting the size of
triangle, and the stop command in square brackets are shown as part of the if statement. The first
input to if must always be a condition that tests and reports if something is either true or false. The
statement usually has several pieces – a value, a predicate, and another value. You can use the
following predicates: equal (=), less than (<), or greater than (>). Remember to put spaces
between predicate symbols and both the first and second values that you are comparing. If the
condition (in this example, :SIZE > 50) is true, Logo runs the list of instructions inside the

Exploring Computer Science With Lynx

 78

square brackets, in this example, Stop. If the condition is false, Logo ignores the instruction and
goes to the next line in the procedure.

 Study the following recursive variable tower program using an if statement.

to TOWER :SIZE	 	 	 	 Subprocedure used in TOWER:
										 if :SIZE < 3 [stop] to SQUARE :SIZE
 SQUARE :SIZE repeat 4[Fd :SIZE rt 90]
 fd :SIZE end
 TOWER :SIZE * 0.6
 end
The TOWER program is a variable program with an if condition statement. It is also a recursive
program causing the size of the tower to change. In TOWER :SIZE * 0.6 the variable size used
as input to TOWER in the Command Center is multiplied by the decimal number, creating a new
value for :SIZE. The TOWER program is also modular because of the SQUARE :SIZE
subprocedure.

 Can you explain what each line of the recursive variable modular program does after you
type it in the Procedures Pane on the side of the page? Run and test the program to see if you can
make different sized towers. Did you remember to include a subprocedure program SQUARE
:SIZE in order to have the TOWER program work? What happens to the size of the towers when
the procedure is tested in the command center?

Lynx Modular Variable (Recursion) Project

Turtle Activity 1
Type the following variable programs and test them in the Command Center to view the results.
Modify and change the programs to create your own ideas. Which programs are simple variable,
variable recursive, or show modular variable recursion?

to Spiral :S
repeat 100 [fd :S rt 90 make "S :S + 5]
end
to Hex :Num
setc 5 setbg 1
repeat 6 [fd :Num rt 60]
lt 150
Hex :Num
End
to Growsquare 	 Superprocedure for Square :Size program	
Square 10
Square 20
Square 30
Square 40
Square 50
Square 60
Square 70
Square 80
Square 90
Square 100
Square 110

Exploring Computer Science With Lynx

 79

Square 120
end
to Growsquares :Size	 Superprocedure for Square :Size program	
if :Size > 90 [stop]	 	 	
Square :Size
Growsquares :Size + 10
end
To Square :Size					 Subprocedure for GrowSquare and		
Repeat 4[Fd :Size Rt 90] Growsquares :Size
End	 	 	 	 	 	

Turtle Activity 2
Apply Logo procedures and primitives to write your own turtle modular variable recursive
program. Test your program to see if it works in the Command Center without any error
messages.

Animating Turtle Shapes

 By applying what you have learned about basic turtle coding and drawing shapes, you are
ready to create animated or moving graphics. Consider the following program to show an animated
moving dog:

to Rundog
pu seth 90
repeat 50 [setsh 30 wait 2 setsh 31 wait 2 fd 10]
end

In this program you can see the pu command is used so the turtle will not leave a trail. The turtle
has then been told to wear two costumes (in this case, setsh 30 and setsh 31) and to repeat
changing these shapes 50 times. The command wait causes Logo to pause for 2/10th of a second (if
you use wait 10, Logo pauses for about one second). Type this procedure in the Procedures
Pane on the left side of the page.

 Before running the procedure you will need to make the animation look like a dog, instead
of a moving turtle. First, you need to find the dogs from the “+” symbol on the toolbar to open the
window. Scroll to the Sample Clipart window to view the side window selecting Animation. Find
the two dog shapes (numbers 30 and 31), click on the dog shape to view the hand image on a
hatched turtle on the page. Select the other dog shape and click on the turtle again. Select the
keyboard image on the toolbar to view the Procedures side window displaying the Rundog
program. Finally, you can type “rundog” in the command center to see if the dog moves across the
screen (refer to Figure 20) and stop the procedure by pressing the stop button icon. Remember
setsh 0 returns the turtle to its original shape, a turtle. You can import your own shapes to the
shapes page. Refer to Getting Started with Lynx pages 20-22 for further instructions on using
clipart as turtle shapes and adding your own clipart. This PDF is in the Help Section>User Guides.

Exploring Computer Science With Lynx

 80

Figure 20. View of the Rundog program entered in the Lynx program.

Adding a Button and Slider for Animation of Shapes
 To animate more than one shape, for example, two running Lynx turtle shapes you can
hatch two turtles from the plus “+” symbol and then write the following program in the procedures
window:
 to Lynxrace
 tto [t1 t2] seth 90
 repeat 100 [tto [t1 t2] setsh 1 fd random 20 wait 1 setsh 2
 fd random 20 wait 2 setsh 3 fd random 20 wait 1 setsh 4 fd
 random 20 wait 2]
 end
Type Lynxrace in the command center to run the program. Do the Lynx run together or at
different speeds? Refer to Figure 21.

Exploring Computer Science With Lynx

 81

Figure 21. An example of a Lynx race animation using a control buttom to adjust the speed of one Lynx.

 By adding a button and slider tool you can vary the speed of a Lynx. Add a button to the
page by selecting from the plus “+” symbol. Label the button with a name (for example, Race
Lynx #1) and then type or select the program name (for example, Racespeed) in the On click
space Refer to Figure 22. To vary the speed of an object, like the Lynx, choose slider from the
plus “+” icon. Open the slider (Cntrl-Command or right click) to Name the slider speed (Refer to
Figure 23). Set the Min and Max values from 0 to 10 with a Value of 0 and then click the Apply
button. Write the following Racespeed program as follows in the procedure window:
 to Racespeed
 tto [t1] forever [fd speed / 10]
 end
Type Racespeed in the command center and find out which turtle shape Lynx t1 or t2 can you
vary the speed by clicking the button and moving the slider?
	
	

Exploring Computer Science With Lynx

 82

	
Figure 22. View of window for creating a button for the Lynx race.

Figure 23. View of the tool window showing the slider name speed with minimum and maximum values.

Exploring Computer Science With Lynx

 83

Animation Procedures with Varying Shape Speed and Added Background
 Another option is to write an animated coding procedure moving turtle shapes at different
rates of speed in front of a background scene. Begin by typing the Lynxchase program in the
procedures window:
 to Lynxchase
 tto [t1] seth 90 forever [setsh 1 fd random 50 wait 2 setsh 2 fd
 random 50 wait 2]
 tto [t2] seth 90 forever [setsh 1 fd random 50 wait 2 setsh 2 fd
 random 50 wait 2]
 end
Select from the plus “+” symbol to hatch two turtles (t1 and t2). Open the Sample Clipart
window to find the four Lynx shapes (numbers 1 to 4). Click on each Lynx shape on to t1 and t2.
Remember to view the hand image on a hatched turtle on the page for clip art placement. Select
all four Lynx shapes by repeatedly clicking on the turtle. Select the keyboard image on the toolbar
to view the Procedures side window displaying the Lynxchase program. Finally, you can type
Lynxchase in the command center to see if the two Lynx move across the screen Do the Lynx
run at different speeds? Which commands vary the speed of the Lynx?

 A background scene can be selected after running the program successfully. To include a
background click on the “+” symbol on the tool bar and open the window. Select the sample Clip
art side window Background or other objects like Buildings, Nature, or People. You will be giving
the background shape to a turtle and stamping this into place. Refer to Getting Started with Lynx
page 24 for further instructions on adding a background scene to your project. Figure 24 shows
the Lynxchase program with a background scene.

Figure 24. Example of two Lynx racing at various speeds with the addition of a background shape.

Exploring Computer Science With Lynx

 84

Additional Features for Project Development
	
Adding	Pages	
 You may want to have more than one page to create presentations of all of your projects
including animation displays. A cover page may be written to provide a title page of the project or
directions for viewing and use. Remember to click the left and right arrows (< >) located a the top
of the Procedures Pane to switch pages after chosing Page in the “+” menu. You can also add
buttons to advance pages by creating a button link to a page using the following example program
procedure:
 to Page2
 page 2
 end
 to Page1
 page1
 end
Further instructions about adding and changing pages can be found at Getting Started with Lynx on
page 18.

Adding Sound and Music
 Adding sound and music to your animation scene can be downloaded and imported into the
project. Begin by chosing Sound in the “+” menu for the Import sound . . . dialog box to appear.
Select (button) a sound file to add the URL link. Click the Create button to import the sound link
to the project page work area. A musical note icon will appear with an attached name, which can
be changed with a right-click or Control-Command click on the icon. Getting Started with Lynx on
page 17 provides additional music ideas along with the BBC Sound effects link at
http://bbcsfx.acropolis.org.uk/.

A Clickable and Detectable Turtle to Control Movement
 A clickable turtle allows the user to click on a turtle shape and have the turtle perform the
command(s) written in a program. Begin by typing a program procedure to control the movement
of a turtle, for example:
 to command
 pd repeat 4 [fd 100 rt 90]
 rt 45
 end
Next right click on a turtle to view the Name window and select the program name (command) in
the On click field. Click on the Apply button to close the window. Click on the turtle several
times. What did you make?

 When opening the turtle’s Name window you can also control the turtle movement for
other objects using touch and color. Refer to Getting Started with Lynx pages 25-28 for
instructions and procedures for controlling the turtle.

Turtle Hint!
Turtle control reminder to right click on the turtle to find the turtle name (for example, t1 or t2).
Change the name of a turtle with the window display open to another turtle number or Name like
“Tom. The name must be 1 word. You can also change the Xcor and Ycor positions of the turtle.

Exploring Computer Science With Lynx

 85

Lynx Animation Program Project

Turtle Activity 1
Type the Rundog animation program procedures and hatch a turtle for placement of the Lynx dog
shapes. Add a background scene for the animated graphic.

Turtle Activity 2
Run the Lynxrace program and add a button with a slider to vary the speed of one Lynx.
Alternately run the Lynxrace program with a selected added background.

Turtle Activity 3
Develop your animation program by adding sound, music, and pages including controlling the
turtle on a click or to detect objects.

Turtle Activity 4
Create your own animated graphic using ideas from the Lynx at https://lynxcoding.club/. Select
the Learner Mode button are review the following two programs for ideas:
 • Terry Fox
 • On Your Mark, Get Set . . .
Select the Advanced button to review the following program for ideas:
 • Down the River

Going Further: Words and Lists in Logo Procedures

The Print Statement and Character String Changes
 Logo provides operations for manipulating words. Words may be combined into longer
words or broken into word parts. Words may be written as procedures and may serve as inputs or
outputs. A string of characters (for example, letters of the alphabet) is called a word. Logo permits
the user to manipulate and change sequences of words on a word-by-word basis. The following
are some procedures for using primitives to control words.

 To tell Logo you are typing a word, and that word is not a command, always place
apostrophes before and after the character string (word). Alternately, a quotation mark before the
character string can be used. For example, create a textbox on the page and try:
											 print ‘Turtle’ or print “Turtle	
Logo will type:			 	

Turtle
Print	tells Logo to print the word Turtle. Print may be abbreviated pr when typed in the
Command Center or in a procedure (for example, pr "Turtle). The quotation mark is only
needed at the beginning of the word. If a quotation mark is placed at the end of a word, Logo
thinks the quotation mark is part of the word:

 print "Turtle"
 Turtle"

Exploring Computer Science With Lynx

 86

 With the Print statement it is possible to manipulate and change printed words. Logo
provides the following operations for taking characters out of words using first:

 first Outputs the first character of a word used as
 input
 butfirst (or bf) Outputs a word containing all but the first character of a

word used as input
Some examples using these operations include:

print first ‘slow’
S
print butfirst ‘slow’
low
print butfirst ‘s’

										 (blank	line)	
Logo provides the following operations for taking characters out of words using last:

	last							 	 	 Outputs the last character or a word used as
 input
butlast		(or bl)	 	 Outputs a word containing all but the last character of a
 word used as input

Some examples using these operations include:
print last butlast ‘slow’
o
print butlast ‘s’

 (blank line)
The instruction print last butlast "slow says to print the last letter of its input. In this case, its
input is whatever butlast “slow outputs, which is all but the last character of the word slow.
This means, butlast outputs slo. Since the last character in slo is o, Logo prints o.

 The result of print butfirst "s and print butlast "s is a word containing no
characters. A no-character word is called an empty word. An empty word can also be specified by
typing a quotation mark followed by no characters:

print ‘ ‘
(blank line)

 Another command, item, is similiar to the character operation commands. Item reports the
element of a word or list that is in the specified position. For example:

	print item 2 ‘slow’		
	l			

 For making a larger word from smaller ones, Logo provides the word operation. Word
takes two words as input and combines them to form a single word:

print word ‘base’ ‘ball’
baseball

 A sequence of words is called a list in Logo. Use the list command to print two
character strings (words), leaving a space between them.

print list ‘base’ ‘ball’
base ball

Exploring Computer Science With Lynx

 87

 In Logo, numbers are treated as words when used as input to any commands that change
words. All word changing commands work on numbers, too.

print first 2468
2
print butfirst 2468
468
print word 3412 2935
34122935

Note that a quotation mark is not required when typing numbers after print commands.

Defining and Manipulating Words, Lists, and Sentences
 Since Logo allows you change sequences of words on a word-by-word basis and numbers
are treated as words, it may be helpful to discuss rules and procedures for writing words and lists.
This includes procedures for writing sentences, which will be helpful in successfully running turtle
programs and displaying outcomes. Understanding correct Logo terms will lead to successfully
writing interactive programs using words and lists to show conversations.

 A sequence of words is called a list. Yoder (1985) describes three kinds of objects which
make up the Logo language: words, numbers, and lists. These three objects are summarized as
follows:

1. Word - An ordered collection of characters. Often Logo words contain letters, numbers,
periods and symbols (for example, &, >, and +)

2. Number - A special kind of word that does not need apostrophes or quotation marks
3. List - An ordered collection of words and/or lists

 (Yoder, 55, 1988).

 A space usually separates two different Logo words. This means any name of a Logo
program or procedure must be a single Logo word and cannot have a space in it (for example,
MYHOUSE would work, but MY HOUSE would not). If a word does not have a quotation mark
in front of it, Logo treats it as a primitive or procedure name – something to run. If you put a
quotation mark in front of a word, Logo does not treat this as a command, but recognizes it as a
word. For example, when print "Hello is typed in the Command Center, Logo recognizes that
Hello is a word, not a command, and prints Hello in the textbox on the page. If Print Hello
(without the quotation mark) is typed, and because Hello is not a built-in Logo word, Logo looks
for a procedure named Hello. Since there is none, Logo responds with "I don't know how to Hello."

 Numbers are special kinds of words in Logo and don't require quotation marks. For
example, print 456 prints the number 456 in the textbox on the page. This is so Logo can use
standard arithmetic notation when solving problems, for example,

print 45 + 67		
or		
pr 5678 / 23	

 Sometimes Logo users are unsure if quotations, brackets, parentheses, or colons should be
used when working with words and lists. These questions sometimes arise when debugging Logo
programs. As a rule, ask yourself the following question: "Do I want Logo to read a sequence of

Exploring Computer Science With Lynx

 88

words (in other words, a list) or group some part of an instruction here?” In addition, keep these
punctuation rules in mind:

Symbol Name Use
‘ ‘ or
“

Apostrophes or
Quotation mark

Used to designate a word, rather than a primitive or procedure name

[] Square brackets Used to indicate a list
() Parentheses Used as grouping symbols, to clarify how inputs are evaluated
: Colon or ‘dots’ Used as grouping symbols, to clarify how inputs are evaluated

For example, the bracket may be used to define words or lists as follows:

Example Description
[Debug the turtle] A list of three words
[678 a lsjlksa] A list of three words
[Debug [the] turtle] A list of two words and one list (containing one word)

[[Debug now] [Debug
turtle] [Debug the turtle]
]

A list of three lists

Review the above examples of lists to get a better understanding of the bracket punctuation rule.

 Parentheses are used to group symbols together. For example:

print (list ‘hello’ ‘green’ ‘turtle’)
List usually takes only two inputs. When using more than 2 inputs (for example, three as in the
example above) you need to put parenthese around the command and all of its inputs. If you are
using fewer inputs (for example, to change a word from a word to a list, which is sometimes
necessary when using certain primitives), you need to put parenthesesseperating them around the
command and all of its inputs.

print(23 + 56 + 98) / 4
In this example, the parentheses clarify the arithemetic operations, and are used just as they would
be in paper and pencil arithmetic operations.

 The colon (or ‘dots’) indicates a variable and means “ the value associated with a name”.
For example, when assigning variables in Logo procedures, you would type a name with a colon
(:) in front of it (SQUARE :SIDES). When running the procedure, the appropriate type of input (in
this case, a number) is used as input, for example, SQUARE 50.

 While gaining experience working with Logo procedures and debugging program errors,
these rules of grammar and punctuation will become more clear. Remember to ask the question:
"Do I want Logo to read a sequence of words (in other words, a list) or group some part of
instructions for running a procedure?”

 Further information, examples, and applications of these rules regarding Logo grammar
and punctuation are discussed below. This will provide the Logo user additional skill to effectively
write procedures using words and lists.

Exploring Computer Science With Lynx

 89

 Words may be listed with separate spaces separating them and enclosed in square brackets.
When words are in a list, they do not need a quotation mark and the square brackets are not
printed. Extra spaces are ignored when typing lists of words in a bracket and result in the
following textbox display:

print [The turtle makes lists.]
The turtle makes lists.

 First,	last,	butfirst,	and	butlast commands operate on lists and words in a
similiar manner. When used with lists, these operations pick out the first or last word of a list,
rather than the first or last character of a word. Here are a few examples of operation commands
and their resulting screen displays:	

print first [The turtle makes lists.]
The
print first butfirst [The turtle makes lists.]
turtle
print butlast [The turtle makes lists.]
The turtle makes
print butfirst [The]

 (blank line)
The last example produces no words and is called an empty list. An empty list may be typed into a
program as print[]. Typing print empty? word/list reports true if a word/list is an empty
word or an empty list; otherwise it reports false. Examples using print empty? are:

print empty? []
true
print empty? "
true
print empty? ‘ ‘
false
print empty? [0]
false

 Even though Logo prints words and lists the same way, they are not considered equal. This
is shown in the following example:
										print ‘Turtle’																	 	 {list}	
										Turtle	
										print [Turtle]																 	 {word}	
										Turtle	
										print ‘Turtle’ = [Turtle]		 {rule proven}	
									false	

 Remember, a string of characters are called a word and a sequence of words are called a
list. As a general rule a list in Logo is never considered equal to a word. Conversely, a word is
not considered equal to a list that contains that single word. This word/list inequality exists even
though Logo prints these in the same way. The print Word? word/list command reports true if
an input is a word, false if it is not. Study these commands and screen displays:

print word? ‘shapes’
true
print word? [shapes]
false

Exploring Computer Science With Lynx

 90

print word? 123
true

As shown above, shapes is a word as long as it is not enclosed in square brackets. Print word?
word/list also proves a list and a word are not the same thing. Remember, square brackets are used
to define a sequence of words called a list. Finally, as the last print word? instruction shows,
numbers are treated like words in Logo.

 Another way to show the inequality of words and lists is demonstrated by the equal? and
number? commands. Examples of these procedure commands and the screen displays are given as
follows:

print equal? ‘a’ ‘A’
 true

print equal? ‘one’ ‘1’
false
print equal? ‘turtle’ [turtle]
false
print number? 21
true
print number? [21]
false
print number? (21)
true
print number? 64 / 8
true

Equal reports true if word/list1 and word/list2 are the same, even if only one uses a capital letter.
An examination of the print number? commands show that while a number can be included in
a list, it is not equal to the number when used as a word, outside the list. Again, a group of
characters used as a word is not equal to that group of characters inside a list.

 Another command, identical (for example,	print identical? "a "A), requires the
characters of each input match exactly, even in terms of uppercase and lowercase characters. If
these characters don't match, Logo outputs false.

 While words and lists are not equal, they can be examined to determine if they are a
member of each other. If word/list1 is an element of word/list2, Logo reports true. If it is not an
element, Logo reports false. The	print member?	(word/list1)(word/list2) instruction illustrates
this relationship in the following examples and printed displays:	
										 print member? ‘u’ ‘turtle’

true
print member? ‘turtles’ [Friendly turtles]
true

However, a character string is not an element of a list, even if a word within that list contains those
characters:

print member? ‘u’ [Friendly turtles]
false

 Number	reports true if its input is a number. Above, when 21 is placed in brackets, it no
longer is treated as a number. Brackets indicate a list which is a sequence of words. A list is not a

Exploring Computer Science With Lynx

 91

number and therefore is false. However, when parentheses are included around the number 21, the
resulting display is true. Parentheses are not treated like square brackets (in other words, as
indicating lists) and are used in Logo for number operations.		Print number?	shows the
difference in Logo syntax between square brackets (lists) and parentheses (number operation).

 To obtain a report on the number of elements in a word or list type	print count	word/list
in the Command Center. If the input is a word,	count reports the number of letters in the word:
										 print count ‘Turtles’

7
If the input is a list, count reports the number of items (words or lists) in the list:

print count [Turtle Turtle Turtle]
3

To test the reorder program, type in the Command Center:
print Reorder [turtles and eggs]		

The printed output in the textbox shows:
eggs and turtles	

 Sentence	is the command or operation for putting lists together. Sentence is like the
word operation for words. Sentence takes lists or words as inputs and puts them together into one
list:

print sentence [Friendly turtles][move forward.]
Friendly turtles move forward.
pr sentence “Turtles [change color.]
Turtles change color.
pr sentence “Turtles “change
Turtles change

Sentence can only take two inputs (two words or two lists or a word and a list). If you type:
	pr sentence “Turtles “change “color	

…. you will get the following error message:
I don't know what to do with color.

You can use parentheses if you want to use more than two inputs with sentence, as in:
pr (sentence ‘Turtles’ ‘change’ ‘color’)
Turtles change color	

Note that both the command sentence and all its inputs is included in the parentheses, but the pr
command is not.

 Insert word/list is a useful command when working with words and lists. Study the
following example typed in the command center:

ct
insert ‘friendly’ insert [friendly turtle]

The insert command types the word friendly in the textbox and then, immediately after, types
the list “friendly turtle” on the same line:

	friendlyfriendly turtle	
Another example followed by its textbox display is:

print ‘friendly’ insert [friendly turtle]
friendly
friendly turtle

The input to the next print or insert instruction will be typed immediately after the ‘e’ in turtle.

Exploring Computer Science With Lynx

 92

 Fput or lput commands provide another way to insert a word or list at the beginning or
end of a list. Study these examples:

print fput ‘show’ [the turtle]
show the turtle
print fput [show][the turtle]
[show] the turtle
print lput ‘hides’ [the turtle]
the turtle hides
print lput [hides] [the turtle]
the turtle [hides]

As shown above, fput (first put) places a word/list at the beginning of a list. Lput (last put)
places a word/list at the end of a list.

 Many primitives are available to the user when working with words and lists. These
primitives are helpful for creating interactive lists and numbers programs.

Words and Lists in Logo Program Procedures
 Use of word and list commands with print or insert in Logo programs is a way to manipulate
and change character strings and words to create interesting graphic word displays. An
understanding of the rules for writing words and lists will be helpful in writing program procedures
that create visual word displays.

 The following TRIANGLE program shows the use of words as inputs to procedures. Study
the following recursive procedure:
 to TRIANGLE :WORD

if :WORD = "[stop]
print :WORD
TRIANGLE butfirst :WORD
end

 Create a textbox on the page. When TRIANGLE "CYCLONE is typed in the Command
Center, the following word display appears in the textbox:
										 CYCLONE
 YCLONE

CLONE
LONE
ONE
NE
E

 The TRIANGLE program reduces the number of characters in a word by successively
subtracting one. The procedure line TRIANGLE butfirst makes the word smaller by removing the
first character. The if conditional statement stops the program when the word contains no
characters (it is an empty word).

 The following DOUBLE procedure shows the use of words as outputs to other commands
or procedures. The DOUBLE procedure takes a word as an input and outputs the word twice,
combined into one word:

Exploring Computer Science With Lynx

 93

to DOUBLE :WORD
output word :WORD :WORD
end

Double must report its output to a command that needs an input, for example, print. When
print DOUBLE "VISION	is typed in the Command Center, the following appears in the textbox:
											 VISIONVISION		
 Here’s another example. Type:

print DOUBLE DOUBLE “VISION		
											 VISIONVISIONVISIONVISION

 With the TRIANGLE and DOUBLE procedures typed in the Procedures Pane of a project,
typing the instruction, TRIANGLE DOUBLE "CYCLONE in the Command Center produces:
										 CYCLONECYCLONE
 YCLONECYCLONE

CLONECYCLONE
LONECYCLONE
ONECYCLONE
NECYCLONE
ECYCLONE
CYCLONE
YCLONE
CLONE
LONE
ONE
NE
E

Various words may be typed into the TRIANGLE DOUBLE program to create neat graphic
displays.

 Here are some additional examples using words and lists in program procedures with
recursion and variables, used to solve number factorials and change the order of words in a list.
These adapted programs from the Logo Foundation (2012) are:

to Solvefactorial :num
if :num = 1 [output 1]
output :num * solvefactorial :num - 1
end
to Reorder :list
ifelse equal? count :list 1[output first :list]
 [output sentence reorder butfirst :list first :list]
end

A factorial is a nonnegative integer calculated as the product of all positive integers less than and
equal to the number (e.g., 6 = 6x5x4x3x2x1 = 720). To test the factorial program, for example,
type in the Command Center:

print Solvefactorial 6
The printed result in the textbox should be 720.

 Interesting programs can be created using words and lists in recursive and variable
procedures resulting in different list and number outputs. Access the List of Lynx Primitive user
guide from the Help tool at the top of the Lynx website at https://lynxcoding.club/ to review the

Exploring Computer Science With Lynx

 94

List of Lynx Primitives along with Lynx Vocabulary and Syntax using words and lists from the
Resource Materials.

Turtle Hint!
Remember to create a textbox by clicking on the “+” button for opening the window to select Text.
You can now type in the Command Center print or insert to display words and lists in the
textbox. For example, use the repeat command and print or pr commands, type in the
Command Center:
	 repeat 20 [Pr [Hello Turtle!]]
The result shows the words “Hello Turtle” printed 20 times in a column going down the textbox.
You can type ct (clear text) in the Command Center to erase the contents in the textbox.

Lynx Words and Lists Program Project

Turtle Activity 1
Practice with the Print statement and character strings and create different word and number
outputs. For example, try:
	 1.	Print Sentence [Friendly turtles][move forward.]	
	 2.	Print (23 + 56 + 98) / 4
View and save the results shown in the textbox.

Turtle Activity 2
Test the words and lists program procedures discussed in this section entering different words or
numbers to show outcomes:
												 1.	to DOUBLE :WORD	
	 2.	to TRIANGLE :WORD
	 3.	to Solvefactorial :num	
	 4.	to Reorder :list	

Turtle Activity 3
Create your own words and lists program procedures entering different words for manipulate
words and lists and displaying outcomes.

Interactive Lists and Numbers Programs

 Interactive programs are conversations between Logo and the computer user. Logo (and the
Logo programmer) print a question in a textbox or the Command Center and wait for the question
to be "read" or received by the computer user. The user then answers the question from the
keyboard by typing a character (key) or line (word/list or number). This kind of interaction
between the computer user and Logo is called interactive programming.

 Working with Logo programs permits the programmer to pass information between
procedures using numbers or words as either inputs or outputs. The ability to work with procedures
as either inputs or outputs enables the Logo user to write interactive programs using lists. An
interactive program is written as a conversation procedure. A procedure of this type means a
question is printed and read or received on the page and an answer is typed with the keyboard.

Exploring Computer Science With Lynx

 95

 Start by creating a textbox before trying these interactive words and lists programs.
	 to Meet
 print [Hello and greetings ...]
 print []

question [What is your name?]
 make "name answer
 print se [You have a very nice name,] answer
 end			
	 to Welcome
 question [Hello, my name is Microchip. What is your
 favorite activity?]

announce [I like doing this too!]
 print answer
 end
Examples of the meet program written and executed in the Procedure Pane is displayed (Figures 25
and 26).
	

	
Figure	25.	Demonstration	of	the	Meet	program	presenting	a	question	in	the	Lynx	program.	
	

Exploring Computer Science With Lynx

 96

	
Figure	26.	Demonstration	of	the	Meet	program	displaying	the	final	greeting	in	the	Lynx	program	text	box.	

 The command question opens a dialog box displaying the question and an area to type
the answer. Answer reports what was typed in the dialog box. Make creates a variable, in this
case called name and gives it a word or list, in this case, whatever answer reports, as its value.
The quotation mark in front of the variable name in the make command lets Logo know you are
creating a variable named name. Print :name means print the value of the variable called name
in the textbox.

 Use of words and list commands with say in Logo programs is way to add audio
communication to a project. For example, for a talking program type the following procedure:
	 	 To TurtleTalk
 Say [What do you want to talk about? I am a turtle
 ready to speak!]
 End
Experiment and change the name of the program and words to communicate the desired message
for a Lynx project. An example of a student words and list project is Dudetalk (Figure 27).

Exploring Computer Science With Lynx

 97

	
Figure 27. A student interactive words and lists project called Dudetalk. (Refer to appendix for program
procedures.)

Lynx	Interactive	Lists	and	Numbers	Program	Project			
	
Turtle	Activity	1	
Test	the	lists	and	numbers	interactive	procedures	discussed	in	this	section,	entering	different	
words	and	keystrokes	for	displaying	outcomes.	
 1. To Meet
 2. To Welcome	
 3. To TurtleTalk

Turtle Activity 2
Select from the Appendix the coding project Figure 27 (dudetalk) to copy and run in the
Command Center. Debug and add program procedures to enhance the project.

Turtle Activity 3
Create your own lists and numbers interactive program procedures and test the program so it runs
efficiently.

Applying Graphics, Animation and Interactive List Procedures for Developing Games

 After gaining experience in the Lynx coding environment students will be ready to develop
interactive games using the Logo language. Students with understanding to apply programming in
creating graphics, animation, and using interactive words and lists procedures will have the tools to

Exploring Computer Science With Lynx

 98

develop a Logo based game. Some students may benefit from reviewing existing games created
for project ideas or use of coding procedures to incorporate into their own interactive game.

 Examples of interactive games can be found at the Lynx website at
https://lynxcoding.club/. Sample Lynx programs to review can be found by scrolling to the tabs
below the CREATE A LYNX PROJECT button. Suggested for the Learner Mode is:
 • Math and Matches
For the advanced tab review the following projects:
 • Throw the Dice
 • Way Home
The Games tab has these program designs:
 • Seeker Game
 • Ha Ha Headlines
The Hackergal tab shows a number of project completed by girls during a Hackathon event, which
may provide additional ideas to incorporate into an interactive game.

 The Help tool at the top of the Lynx website has a pull down window to select User
Guides. The downloadable pdf documents provide detail steps in how to create games and
projects. You can select links provided under the Quick, Theme Based Activity Cards or Project
Plans and Teacher’s Notes titles (refer to Figure 28).

Figure 28. Help User Guide link of project ideas

Interactive Game Project

Turtle Activity 1
Create your own game by reviewing the Lynx web site of interactive projects.

Turtle Activity 2
Follow the directions in the User Guides to create a game project.

Exploring Computer Science With Lynx

 99

Appendix: Resources & Activities

Exploring Computer Science With Lynx

 100

Turtle Primitives

DIRECTIONS: Experiment with these commands in the Command Center and draw a shape or
design a graphic. Commands do NOT need to be typed in capitals. If needed, write on the lines
below to help you remember what the command does.

fd number ______________________________

bk number ______________________________

rt number ______________________________

lt number ______________________________

cg/clean ______________________________

home ______________________________

ht/st ______________________________

pd ______________________________

pu ______________________________

pe ______________________________

setc number ______________________________

seth number ______________________________

show heading ______________________________

fill ______________________________

setpos[number1 number2] ______________________________

show pos ______________________________

setpensize number ______________________________

show pensize ______________________________

Exploring Computer Science With Lynx

 101

Turtle Degrees

DIRECTIONS: Follow these activity steps and answer the questions to practice using degrees and
making turtle right and left turns. Use the turtle clock, if needed.

I. Use your Turtle Clock and fill in the number of degrees the turtle should turn to point to the

time shown.

 1) 4:00 ________________ 2) 7:00 _______________

 3) 10:00 _______________ 4) 1:00 ________________

 5) 3:00 ________________ 6) 9:00 ________________

 7) 6:00 ________________ 8) 12:00 _______________

 9) 2:00 ________________ 10) 5:00 _______________

 11) 8:00 _______________ 12) 11:00 ______________

II. Write down the hour the turtle is pointing after it makes these moves. The turtle returns to 0

degrees or the home position after making each turn.

 1) rt 90 _______________ 2) rt 120 _______________

 3) rt 60 _______________ 4) rt 300 _______________

 5) rt 180 ______________ 6) lt 90 ________________

 7) lt 180 ______________ 8) lt 150 _______________

 9) lt 240 ______________ 10) lt 330 ______________

 11) rt 30 ______________ 12) lt 60 _______________

 13) lt 120 _____________ 14) rt 360 ______________

 15) lt 360 _____________ 16) rt 150 ______________

 17) rt 210 _____________ 18) lt 30 _______________

 19) lt 210 _____________ 20) rt 330 ______________

 * 21) rt 540 ____________ 22) lt 390 _____________

Exploring Computer Science With Lynx

 102

 Turtle Degrees (page 2)

III. Write down the hour at which the turtle is pointing after it makes each series of moves.
 Return to the seth 0 degrees or home position after finishing the series of turns.

 1) rt 30 rt 30 rt 30 ________________
 2) lt 90 rt 90 lt 90 ________________
 3) rt 30 lt 90 rt 210 ________________
 4) lt 90 rt 180 rt 180 ________________
 5) rt 30 rt 120 lt 180 ________________
 6) rt 60 rt 60 rt 60 ________________
 7) rt 180 rt 180 ________________
 8) lt 360 rt 360 ________________
 9) rt 90 lt 180 lt 30 rt 210 ________________
 10) lt 60 lt 60 lt 60 lt 60 lt 60 lt 60 ________________
 11) lt 180 lt 90 rt 30 rt 60 ________________
 12) lt 270 rt 180 lt 60 ________________

IV. Questions

1. If the turtle is pointing to 4:00, how many more degrees does it have to move to reach 7:00?

2. You have turned the turtle rt 210. How many more degrees right should the turtle turn
 to reach 0?

3. How many rt 90 commands would get the turtle back to the same place?

4. Starting with the turtle at 12:00, give any three ways to get the turtle to reach 5:00. You
 can make more than one move.

5. A 90-degree turn is called a right angle. Ninety-degree angles are everywhere, such as the corner

of a door. Name some examples of right angle objects you have seen.

Exploring Computer Science With Lynx

 103

Lynx Turtle Shapes

DIRECTIONS: For each shape fill in the table using the headings provided. Use the turtle clock, if
needed. When finished answer the question at the bottom of the page.

Shape Number
of Sides

Number of
Degrees for
Each Turn

Repeat Statement

Triangle

Quadrilateral

Pentagon

Hexagon

Septagon

Octagon

Nonagon

Decagon

Circle

*Other?

Question: What is the turtle rule or relationship between the number of turns (rt or lt) and repeat
number?

Exploring Computer Science With Lynx

 104

Repeat Predictions

DIRECTIONS: Complete the following activities by first writing the repeat procedure the each set
of single commands. Next type the repeat instructions in the Command Center of a new page and
draw the graphic outcome.

1. For each set of single commands write the repeat statement. Sketch the drawing of the
 graphic created in each space provided.

 Single Commands Drawing

 cg
 fd 100
 rt 120
 fd 100
 rt 120
 fd 100
 rt 120

repeat __

When finished drawing type cg.

 Single Commands Drawing
 cg
 fd 100
 lt 90
 fd 100
 lt 90
 fd 100
 lt 90
 fd 100
 lt 90

repeat __

When finished drawing type cg.

2. Draw a picture and predict what each of these repeat statements will tell the turtle to do.
 Type the repeat procedures in the Command Center then draw a picture of the

Exploring Computer Science With Lynx

 105

 outcome. Before each repeat statement, the turtle starts in the home position or center of the
page at the seth 0 position.

repeat 6 [lt 90 fd 10 rt 90 fd 10 bk 10 ht]

Predicted Drawing Turtle Computer Drawing

Did your predicted and actual picture drawings match?

repeat 7 [rt 90 fd 10 lt 90 fd 15 bk 15 ht]

Predicted Drawing Turtle Computer Drawing

Did your predicted and actual picture drawings match?

repeat 4 [fd 80 rt 90 fd 10 rt 90 fd 10 rt 90 fd 10 rt 90 bk 70 rt 90]

Predicted Drawing Turtle Computer Drawing

Make changes to the above design by changing the size (fd number) and/or angles (example: rt
90 to lt 90).

3. Place different numbers in the repeat instruction below and type these in the Command Center.

Change the fd to bk and/or rt to lt commands.

 repeat _____ [__]

What graphic design did you make?

Exploring Computer Science With Lynx

 106

A-Mazing
	
DIRECTIONS: Practice typing program procedures using the repeat command and your turtle
orientation skills with this maze program. Type the maze program in the Procedures Pane and then
run the program by typing, “maze” in the command center. Use the active turtle (e.g., green one)
and type primitives (for example, fd, bk or rt, lt) in the Command Center to move between the
maze squares in order to reach each of the four turtles. The pd command will show the path of the
green turtle to all four black turtles. The command setc 55 turns	the	turtle	green. To view the
maze program displayed in the Lynx windows refer to Figure 29).
	
to maze
pd repeat 4 [fd 50 rt 90] pu lt 90 fd 20
pd repeat 4 [fd 50 rt 90] pu lt 90 fd 20
pd repeat 4 [fd 50 rt 90] pu lt 90 fd 20
pd repeat 4 [fd 50 rt 90] pu fd 70
pd repeat 4 [fd 50 rt 90] pu lt 90 fd 20
pd repeat 4 [fd 50 rt 90] pu rt 90 fd 70
pd repeat 4 [fd 50 rt 90] pu lt 90 fd 20
pd repeat 4 [fd 50 rt 90] pu fd 70
pd repeat 4 [fd 50 rt 90] pu lt 90 fd 70 rt 90 bk 20
pd repeat 4 [fd 50 rt 90] pu lt 90 fd 20
pd repeat 4 [fd 50 rt 90] pu fd 70
pd repeat 4 [fd 50 rt 90] pu fd 70 lt 90
pd repeat 4 [fd 50 rt 90] pu fd 70
pd repeat 4 [fd 50 rt 90] pu fd 70
pd repeat 4 [fd 50 rt 90] pu rt 90 fd 70
pd repeat 4 [fd 50 rt 90] pu rt 90 fd 70 lt 90
pd repeat 4 [fd 50 rt 90] pu fd 70
pd repeat 4 [fd 50 rt 90] pu lt 90 fd 20
pd repeat 4 [fd 50 rt 90] pu fd 70 rt 180 pd stamp
pu setpos [-170 85] stamp
pu setpos [125 145] pd stamp
pu setpos [85 -95] pd stamp
pu home rt 90 pd setc 55
end
	
	
Turtle Questions to Ponder:

1. Were you able to reach the four turtles without bumping into the maze squares? Do you need

more practice with understanding the length of turtle steps or turning using degrees?
2. What does the setpos primitive do? How is this command similar and different to the home

command? What does the stamp command do?

Exploring Computer Science With Lynx

 107

Figure 29. A green turtle pursuit to reach the four black turtles through a maze.

Additional Maze Activities

Turtle Activity 1
Change the setpos commands in the maze program to reposition the turtles in a different location.
Try the maze again.

Turtle Activity 2
Maze Game: Use the maze program procedure to develop an interactive animated game.

Exploring Computer Science With Lynx

 108

Cognitive	Monitoring	Planning	
	
DIRECTIONS: Follow the steps for planning a graphic and writing the Logo procedure into a
working program.

Planned Graphic (Draw the picture you want on the computer.)

Shapes --
(List the --
main shapes?) --
 --

 --
 --
 --
Plan --
(In sentences --
write a well --
planned turtle --
trip.) --
 --

Exploring Computer Science With Lynx

 109

Cognitive Monitoring Planning (continued)

Execute to --
(Write the turtle --
commands to make --
this graphic.) --
 --
 --
 --

 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --
 --

 --
 --
 --
 --
 --
 --
 --
 --
 end

Exploring Computer Science With Lynx

 110

Cognitive Monitoring Planning (continued)

Outcome (Draw the picture the first time attempted.)

Does the planned graphic and outcome match? If yes, you are finished! If not, go on to follow the
Debugging Steps.

Debugging 1. Look at the difference between the picture and what the turtle draws.
Steps 2. Look for mistakes in your Logo program like misspelled commands, spaces
 between commands and numbers, or commands that are not correct.

3. Copy the program commands to the Command Center.
4. Press the Return/Enter key to run each command line-by-line to see how the

graphic is being drawn. Erase and change command lines that are incorrect.
5. After the corrections are made, copy the procedure lines back to the Procedures

Pane remembering to include the to name and end program lines.
6. Type the name of the program in the Command Center to see if the planned

graphics and outcome graphics match. If the graphics do not match repeat
debugging steps 1 – 6 again.

Exploring Computer Science With Lynx

 111

Cognitive Monitoring Student Project Example

Planned Graphic (Draw the picture you want on the computer.)

	
	

	
	
	
	 	 	 	 	
	
	
Shapes														 	 Lines and circles	
(List the
main shapes?)											 	

																																			 	
	 	 	 I will start at the right and make the frame
Plan	 	 	 to connect to the first lens. Another line will	
(In sentences	 	 connect the next lens and then finish the 	
write a well	 	 frame.	
planned turtle
trip.)	 	 	 	 	
																						 	
	

Exploring Computer Science With Lynx

 112

Cognitive Monitoring Planning (continued)

Execute																	 	 to glasses2	
(Write the turtle				 	 rt 90
commands to make				 	 rt 45
this graphic.)														 	 fd 20
 fd 100
 bk 100
 lt 225
 pu
 fd 100
 pd
 circle
 lt 90
 fd 40
 pu
 fd 100
 pd
 circle
 lt 90
 fd 20
 lt 45
 fd 100
 end

Outcome (Draw the picture the first time attempted.)

Does the planned graphic and outcome match? If yes, you are finished! If not, go on to follow the
Debugging Steps

Exploring Computer Science With Lynx

 113

Changing Procedures and Predicting Skills

DIRECTIONS: Before typing each Guess program make a predicted drawing and then draw the
graphic created after the program name is typed in the command center.

to guess1
repeat 2 [fd 80 rt 90 fd 40 rt 90 fd 40 rt 90
fd 40 rt 90 bk 40 rt 180]
end	
	
Guess1 Program

Predicted Drawing Turtle Computer Drawing

to guess2
repeat 3 [fd 50 rt 120]
rt 120
repeat 3 [fd 50 rt 120]
rt 120
repeat 3 [fd 50 rt 120]
end
	
Guess2 Program

Predicted Drawing Turtle Computer Drawing

to guess3
repeat 4 [fd 50 rt 90 fd 20 rt 90]
end

Exploring Computer Science With Lynx

 114

Changing Procedures and Predicting Skills (continued)

Guess3 Program

Predicted Drawing Turtle Computer Drawing

to guess4
guess3 rt 90
guess3 rt 90
guess3 rt 90
guess3 rt 90
end
	
Guess4 Program

Predicted	Drawing	 Turtle	Computer	Drawing	
	
	
	
	
	
	
	
	
	
	

	

	
Additional Optional Activity: Change the Turnit program into creating a new graphic idea or
write your own guess program procedure.
	
to turnit
repeat 4 [fd 50 bk 50 rt 90]
end
	 	

Exploring Computer Science With Lynx

 115

Multiple Turtles

DIRECTIONS: Hatch four turtles. The first turtle hatched is turtle 1 or t1 and the rest of the
turtles are t2, t3, and t4. Experiment with these commands in the Command Center to learn
their functions. Create a button and type the command stopall in the instruction line to stop the
moving turtles on the screen.

home	 	 	 	 	 	 __

clone "t1 __

talkto [t1] pu fd 100 pd fd 100 __

setc random 50 __

clone "t2 __

clone "t3 __

talkto [t1 t3] __

pd repeat 4 [fd 50 rt 90] fd 100 __

pd ask [t1 t3] [setc 25 rt 90] __

tto [t2 t4] pd bk 100 __

repeat 3 [rt 120 fd 50] __
	
stamp rt 90 fd 100 __

tto [t1 t4] setc 127 pd fd 150 __

everyone [fd 50 lt 180 fd 50] __

everyone [glide 140 2] __

glide 50 1 glide 100 0.1 __

show who __

Exploring Computer Science With Lynx

 116

A Turtle Calculator Application

By typing the command print (pr) or show, followed by numbers and math symbols, the Logo
can display solutions to math problems. Logo is able to perform calculator functions and the Logo
primitives pr and show display the numbers and answers on the screen. Print displays the results
in a textbox (created with the Create a Textbox tool in the Toolbar), while show displays the
number or answer in the Command Center.

Here is a list of math symbols in Logo and what they do:
 + Adds
 - Subtracts
 * Multiplies
 / Divides
 = Reports true if its two inputs are equal, otherwise reports false
 > Reports true if the input on the left side of the symbol is
 greater than the input on the right, otherwise reports false
 < Reports true if the input on the left side of the symbol is less
 than the input on the right, otherwise reports false
Remember to put spaces between each symbol and its input numbers.

For example, if the following problems are typed into the Command Center, their answers will
appear on the next line below the word show:
 show 5369 + 89356
 94725

 show 90001 - 7483
 82518

 show 4390 * 8235
 36151650

 Show 141708 / 21
 6748

The other math symbols are typed the same way, except that they will report true or false on the
line below the word show. Examples of problems using the equal sign, greater than, or less than
symbols are:
 show 6 + 8 = 12
 false

 show 9 * 7 = 63
 true

 show 8 > 3
 true

 show 9 < 6 – 3
 false
	

Exploring Computer Science With Lynx

 117

The show not instruction lets you find the opposite (inverse) condition of a problem used as
input. For example, study the following problems and the displayed answers:
 show not 1 = 2
 true

 show not 6 + 8 = 12
 true

 show not 8 > 3
 false

 show not "true
 false

The not primitive reports inverse (opposite) of the problem input. These math symbols along
with the show not instruction can be used in various ways to solve math problems.

MicroWorlds Math Problems

Turtle Activity 1
Check your math assignment or apply the turtle words and lists commands to complete a
computational project.

Turtle Activity 2
Create some math problems to solve, using print and show, and display the outcomes.

	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

Exploring Computer Science With Lynx

 118

Turtle Degree Clock

DIRECTIONS: On the inside center circle of the clock write rt and outside the circle lt. Write
on the turtle clock on the inside next to each hour line the rt (for right turns) number of degrees.
Write on the outside of the clock circle next to each hour line the lt (for left turns) number of
degrees. Begin above the number 12 (12:00) write 0 / 360 (for 0 degrees and 360 degrees).
Questions: If a complete circle is 360 degrees then how many degrees turn is each hour going to
change for rt turns and lt turns?

Turtle Hint!
There are 30 degrees between each hour of a clock. Start with 0 degrees at 12:00 and make a
complete turn returning to 12:00 resulting in 360 degrees. If the turtle starts at 0 degrees and turns
right 90 degrees or rt 90 would it be facing 3:00? If the turtle turns the opposite direction returning
to 0 degrees and turns left 90 degrees or lt 90 would it be facing 9:00?

Exploring Computer Science With Lynx

 119

Logo Program Procedures Learning Models from Figures

Project Ideas to Edit and Debug
DIRECTIONS: Select a coding project to run in the Lynx program. Follow these steps:
1. Copy and paste the program in the Procedures Tab window and test run the program in the
command center.
2. Debug the program by pasting procedures in the command center and running the program line
by line to find the error.
3. Correct program line errors by recopying the program or editing in the Procedures Tab.
4. Test run the program again to check for successful outcomes, if not repeat the debugging steps.
5. Edit by changing and enhancing the program procedures to create a new project or adaptation.

Figure 1. Information display of Lynx layout features available from the Ecosystem activity and
also from other cards on the Lynx web site.

Figure 2. Information window display example for repeat primitive when hovering over
command.

Figure 3. Refer to the gear program procedures in turtle activity project.

Figure 4. Student swim goggle created with turtle primitives and repeat instructions (written as
program procedures).

To SwimGoggles
setc 85
setpensize 15
Repeat 540 [Fd 1 Rt 1]
Rt 270 Fd 110
Rt 90 Fd 10
Rt 90 Fd 110
Rt 90 Fd 10
Rt 90 Fd 110
Rt 270 Repeat 540 [Fd 1 Rt 1]
Rt 270 Repeat 180 [Fd 1 Rt 1]
Fd 325
Repeat 170 [Fd 1 Rt 1]
end

Exploring Computer Science With Lynx

 120

Figure 5. Student smileyface program created with turtle primitives and repeat instructions.

to smileyface
pd setsize 9 setpensize 2
repeat 360 [fd 1 rt 1]
repeat 360 [fd 1 lt 1]
pu bk 60 pd
repeat 360 [fd 0.2 rt 1]
pu bk 75
pu rt 90 fd 90 lt 90 fd 10
pd repeat 180 [bk 1 rt 1]
lt 180
pu fd 80 fd 93 pu bk 45lt 90 fd 45
pu rt 180 fd 90 lt 90 fd 43
pd bk 90
pu fd 45 lt 90 fd 10
pd fill
pu setpos [-92 -43]
pd rt 90 fd 90
seth 200
pu fd 50 fill pu fd 80
seth 340
pd repeat 360 [fd 3.5 rt 1]
pd setc 45 rt 90 fd 10 fill
pu setc 15 setpos [11 -57] fill
end

Figure 6. Student arrow program using turtle commands with repeat instructions.

to arrow
pd setc 105
lt 90
repeat 3 [rt 120 fd 100]
bk 25
seth 0
bk 100
repeat 2 [fd 100 rt 90 fd 50 rt 90]
pu
rt 45
fd 10
fill
seth 0
fd 100
fill
ht
end

Exploring Computer Science With Lynx

 121

Figure 7. Lynx student project showing a computer laptop program.

to laptop
rectangle
rt 110
keyboard
pu rt 20 fd 100 rt 70 fd 5 lt 90 fd 5
screen
pu bk 2 setc 14 fill
pu fd 2
picture
end

to rectangle
setc 9 pd
repeat 2 [fd 100 lt 90 fd 160 lt 90]
end

to keyboard
fd 100 rt 160 fd 160 rt 20 fd 100
pu lt 10 bk 30
setc 84 fill
pu fd 30 rt 10
pd setc 9
repeat 5 [bk 20 rt 160 fd 160 bk 160 lt 160]
lt 20
repeat 8 [bk 20 rt 20 fd 100 bk 100 lt 20]
end

to screen
pd setc 9
repeat 2 [fd 150 rt 90 fd 90 rt 90]
end

to picture
rt 45 fd 40 lt 45 fd 10 rt 90 fd 10
pd setc 9
repeat 360 [fd .5 lt 1]
ht
end

Exploring Computer Science With Lynx

 122

Figure 8. A student modular clock program with circle and number subprocedures.

to clock
pd
circle
repeat 180 [fd 2 rt 1]
three
rt 90
repeat 180 [fd 2 rt 1]
nine
repeat 90 [fd 2 rt 1]
twelve
pu
home
repeat 270 [fd 2 rt 1]
pd
six
pu
home
ht
end

to circle
Repeat 360 [fd 2 rt 1]
end

to three
rt 90 fd 10 pd rt 90 fd 10 bk 20
fd 10 lt 90
pu fd 10
pd rt 90 fd 10 bk 20 fd 10 lt 90
pu fd 10
pd rt 90 fd 10 bk 20 fd 10
pu rt 90 fd 30
pd
end

to nine
rt 90 fd 10 lt 90 fd 10 bk 20 fd
10
pu rt 90 fd 10
pd lt 60 fd 12 bk 24 fd 12 lt 60
fd 12 bk 24 fd 12 lt 60
pu fd 20 rt 90
pd
end

to twelve
rt 90 fd 10 rt 90
pu fd 20 lt 120
pd fd 24 bk 12 rt 60 bk 12 fd 24
bk 24 lt 120
pu fd 6
pd rt 90 fd 20 lt 90
pu fd 10 lt 90
pd fd 20
end

to six
rt 90 fd 10 lt 90
pu fd 10
pd rt 67 fd 24 bk 24 rt 46 fd 24
rt 67
pu fd 5 rt 90
pd fd 21
end

Exploring Computer Science With Lynx

 123

Figure 9. A student modular program with smiley, snake, and peace subprocedures

to everything
smiley
st pu fd 150 rt 90 fd 50 rt 90
snake
pu fd 200 rt 90 fd 200
peace
end

to snake
st pd setc 9
repeat 3 [rt 45 fd 20]
lt 135 repeat 3 [rt 45 fd 20]
lt 135 repeat 3 [rt 45 fd 20]
rt 45 fd 15 rt 135
repeat 3 [fd 20 lt 45]
rt 135 repeat 3 [fd 20 lt 45]
rt 135 repeat 3 [fd 20 lt 45]
rt 135 fd 20 lt 45 fd 20 rt 45
repeat 4 [rt 45 fd 10]
fd 14 bk 24 lt 225 fd 10 lt 45 fd
10 lt 45 fd 5
rt 90 fd 10 rt 45 fd 5 bk 5 lt 90
fd 5 bk 5
rt 45 bk 10
pu bk 5
pd setc 65 fill
ht
end

to peace
st pd setc 9
repeat 9 [rt 45 fd 50]
rt 45 fd 25 rt 90 fd 120 bk 60 rt
45 fd 60 bk 60 lt 90 fd 60
pu lt 45 bk 10 setc 24 fill
pu lt 90 fd 50 setc 44 fill
pu lt 90 fd 75 setc 85 fill
pu lt 135 fd 50
setc 113 fill
ht
end

to smiley
st pd setc 9
repeat 360 [fd 2 rt 1]
rt 90
pu fd 50
pd fd 115 rt 90
repeat 180 [fd 1 rt 1]
pu fd 40 pd
repeat 360 [fd .3 rt 1]
repeat 360 [fd .15 rt 1]
pu rt 90 fd 80 lt 90 pd
repeat 360 [fd .3 rt 1]
repeat 360 [fd .15 rt 1]
pu rt 90 fd 5 setc 9 fill
pu fd 20 setc 95 fill
pu bk 100 setc 9 fill
pu fd 20 setc 95 fill
pu fd 20 setc 44 fill
pu rt 90 fd 50
setc 15 fill
ht
end

Exploring Computer Science With Lynx

 124

Figure 10. A student modular neighborhood program with house, tree, window, circle, and square
subprocedures.

to neighborhood
pd setc 9 house
pu
seth 0 setpos [-164 -180] setc 9
house
end

to circle
pd
repeat 39 [fd 10 rt 10]
pu rt 50 fd 30
fill
end

to square
pd
repeat 4 [fd 150 rt 90]
end

to house
pd square setc 65
rt 90 fd 300 lt 90 fd 75 lt 90 fd
150 lt 90
fd 75 lt 90 fd 20 lt 90 fd 50 rt
90 fd 115
rt 90 fd 50 rt 90 fd 150 fd 50 rt
90
fd 50 lt 90 fd 30 lt 90 fd 50 rt
90 pu
fd 20 rt 90 fd 100 lt 90 fd 10 rt
90
window rt 90 pu fd 75 lt 90 window
pu fd 40 fd 10 lt 90 fd 100 rt 140
pd fd 80 rt 70 fd 105 pu rt 100 fd
150
rt 50 fd 100 lt 90 fd 30 rt 180 pd
tree
end

to window
pd
repeat 4[fd 30 rt 90]
end

to tree
pd
fd 40 lt 90 fd 20 lt 90 fd 40 lt
90 fd 20
lt 90 fd 40 lt 90 fd 10 circle
end

Exploring Computer Science With Lynx

 125

Figure 11. A student modular broken key piano program with various position piano part
subprocedures.

To PIANO
PosPiano
BodyPiano
CovPiano
WhiteKeys
BlackKeys
PadPiano
GreenPia
End

to clear
cg setc 9
end

To PosPiano
st setc 9 cg pu lt 90 fd 250
End

To BodyPiano
Rt 90 pd fd 60 rt 90 fd 500 rt 90
fd 60
pu bk 60 rt 180 pd
End

To CovPiano
setpensize 2
Repeat 30 [fd 1 lt 1 fd 1 lt 2]
Repeat 30 [fd 2 rt 1]
Fd 30 Repeat 10 [fd 1 lt 0.5]
Fd 100
Repeat 150 [fd 2 lt 0.5]
Repeat 25 [fd 1 lt 1.5]
Fd 10 Lt 8 Fd 25
End

To BlackKeys
Repeat 19 [fd 33 rt 90 fd 10 rt 90
fd 33 lt 90
Fd 15 lt 90]
Fd 33 rt 90 fd 10 rt 90 fd 33 lt
90
Lt 90
Fd 20
Pu
Lt 90 fd 5
Repeat 3 [fill fd 22 fill fd 5
fill]
Bk 8 Fill fd 5 Fill Fd 22 fill fd
22 fill
fd 5 fill fd 22 fill fd 24 fill
fd 5 fill fd 22 Fill fd 24 fill
fd 5 fill fd 22 fill fd 24 Fill
fd 5 fill fd 22 fill fd 21 fill
fd 5 fill Fd 22 fill fd 24 fill
fd 5 fill fd 22 fill fd 24 fill
fd 5 fill fd 22 fill fd 22 fill
fd 5 Fill
Pu fd 16.5 rt 90 ht fd 40
End

To PadPiano
setpensize 1
St rt 90 pd fd 500 ht rt 90 fd 3
rt 90 Pu fd 5 fill st
End

To WhiteKeys
setpensize 1
seth 180
pu fd 60 bk 5 lt 90
pd
Repeat 50 [fd 10 lt 90 fd 55 bk 55
rt 90]
lt 90 fd 55
pu lt 90 fd 15 lt 90
pd
End

To GreenPia
pu Lt 45 fd 100 setc 66 fill
End

Exploring Computer Science With Lynx

 126

Figure 12. A student modular recursive named TX2 superprocedure calling g4 subprocedure.

to TX2
g4
fd 50
g4
TX2
END

to guess3
repeat 4 [fd 50 rt 90 fd 20 rt 90]
end

to g4
guess3 rt 90
guess3 rt 90
guess3 rt 90
guess3 rt 90
end

Figure 13. A student modular recursive superprocedure, including random color changing
command, calling shape subprocedures.

to shapes
setc random 200
circle
triangle
square
bk 10
rt 45 shapes
end

to triangle
repeat 3 [fd 100 rt 120]
end

to circle
repeat 360 [fd .5 rt 1]
end

to square
repeat 4 [fd 150 rt 90]
end

Exploring Computer Science With Lynx

 127

Figure 14. A student modular variable program procedures creating different shoe colors.

to shoe :shoec :skin :backg
setpensize 2
setc :shoec rt 90 base 150 30
toe 1
seth 0
repeat 90 [fd .5 lt 1]
seth 180 fd .5 * 60
seth 270
base 70 .1 * 03
seth 180
base 50 .0001 * 0.3
seth 150
fd 20 seth 0
pu fd 30 fill
setc :skin
pu fd 50 bk 20 fd 10
pd fd 100 rt 90 fd 30 fd 20 rt 90
fd 100
rt 90 fd 50 seth 120 seth 60 fd 20
fill
setc :backg
seth 270 pu fd 100 pd fill
ht
end

to base :length :width
repeat 3 [fd :length lt 90 fd
:width lt 90]
end

to toe :size
seth 0
repeat 90 [fd :size lt 1]
end

Figure 15. A student solar eclipse variable program with subprocedures.

to solareclipse
pd
setc 7
fill
home
setc 9
blackcircle
lt 90 fd 100 rt 90
pd
circle 2
ht
pu fd 200
end

to circle :size
Repeat 360 [fd :size rt 1]
end

to blackcircle
circle 2
pu
rt 90 fd 100
fill
home
end

Exploring Computer Science With Lynx

 128

Figure 16. A student modular outfit procedures with assigned variable shirt values.

to outfit
shirt 100
pants
ht
end

to shirt :Size
pd Fd :Size Rt 90 Fd :Size Rt 90
Fd :Size
rt 90 Fd :Size Rt 90 Fd 100 lt 90
pu fd 10 lt 45
pd seth 180 repeat 4 [fd 30 rt 90]
seth 90 fd 120 repeat 4 [fd 30 rt
90]
bk 100 repeat 180 [fd .25 rt .5]
lt 160 fd 30
pu rt 180 fd 25 fd 20
setc 93
end

to pants
fd 10 rt 90 fd 5 lt 90 fd 30 lt 25
fd 21
pd fd 99 lt 90 fd 20 lt 90 fd 100
pu fd 5
pu lt 90 fd 20 lt 90 fd 20 lt 90
fd 20
fd 20 lt 90 fd 20
pd bk 100 rt 90 fd 17 lt 90 fd 100
pu fd 10
fill
end

Figure 17. A student modular crayons procedures with assigned variable values.

to crayons
pd
crayon 119 116
setc 9
lt 90 fd 20 rt 90 fd 40 lt 90
pd crayon 69 64
ht
end

to crayon :wax :wrapper
setpensize 2
fd 200 rt 45 fd 30 rt 90 fd 30 rt
45
fd 200 rt 90 fd 42 rt 90 fd 25 rt
90
fd 42 lt 90 fd 150 lt 90 fd 42 bk
30 rt 90
pu fd 20
pd setc :wax fill
pu bk 40 lt 180 setc 9
pd fd 100 repeat 180 [fd .2 rt 1]
fd 100 repeat 180 [fd .2 rt 1]
pu rt 45 fd 10
pd setc :wax fill lt 45
pu fd 130 fill
bk 20 setc :wrapper
fill
end

Exploring Computer Science With Lynx

 129

Figure 18. A student modular variable desk program using assigned variable values.

to desk
pu lt 90 fd 150 lt 90 fd 50 rt 90
pd setc 9
repeat 2 [rt 90 fd 200 rt 90 fd
300]
leg 70
pu fd 2 rt 90 bk 2 setc 23 fill fd
2 lt 90 bk 2 fd 10 lt 90 fd 2 setc
23 fill bk 2 rt 90 bk 10
pd setc 9 bk 265
leg 70
pu fd 2 rt 90 bk 2 setc 23 fill fd
2 lt 90 bk 2
fd 10 rt 90 bk 2 setc 23 fill fd 2
lt 90 bk 10
pd setc 9
rt 90 fd 158 lt 90
leg2
pu lt 90 fd 10 lt 90 fd 2 setc 23
fill bk 2 rt 90 bk 10 rt 90
pu lt 90 fd 30 rt 90 bk 2 setc 23
fill fd 2 lt 90 bk 30 rt 90
pu
fd 30 lt 90 fd 30
pd setc 9
pencil
ht
end

to leg :side
lt 110 fd :side lt :side fd 10 lt
110 fd :side bk :side rt 20 fd 20
lt 20 fd 48 lt :side
end

to leg2
lt 110 fd 50 lt 70 fd 10 lt 110 fd
80 bk 80 rt 20 fd 20 lt 20 fd 75
lt 70
end

to pencil
fd 50 rt 20 fd 10 rt 140 fd 10 rt
20 fd 50 rt 90 fd 7 rt 90 fd 10 rt
90 fd 7 pu bk 2 lt 90 bk 5
setc 133 fill
pu fd 5 rt 90 fd 2 lt 90 fd 40
pu bk 5 rt 90 bk 10
pu fd 7
setc 45 fill
pu bk 2
setc 9 lt 90 fd 4 rt 90 pd fd 5
pu bk 4 lt 90 fd 3
setc 23 fill
pu fd 30
setc 27 fill
end

Figure 19. A student variable project clearing and creating medieval colored swords.

to swords :c
setc :c
fill
repeat 4 [sword 125 50]
end

to circle
setc 104
repeat 43 [fd 2 rt 10]
end

to sword :s :h
circle
lt 70 setc 14 fd 30 lt 87
fd :h rt 170
fd :h lt 83
setc 139
fd :s
rt 20 fd 14 rt 139 setc 139 fd 14
rt 20
setc 25 fd :s
lt 88 setc 45
fd :h rt 170
fd :h lt 81
setc 85 fd 30 lt 90 pu fd 30 pd
end

Exploring Computer Science With Lynx

 130

Figure 20. Refer to the Rundog program in the Animating Turtle Shapes section of the text.

Figure 21. Refer to the text program procedures of a Lynx race animation using a control buttom to
adjust the speed of one Lynx.

Figures 22. & 23. Refer to the directions and window figure displays for adding a button and slider
to the Lynxrace animation.

Figure 24. Refer to the program procedures in the text of two Lynx racing at various speeds with
the addition of a background shape.

Figures 25. & 26. Refer to the Meet program in the Interactive and Numbers Programs section of
the text.

Figure 27. A student interactive words and lists project called Dudetalk.

to dudetalk
print [Hello man . . .]
print []
question [What is your name?]
make "name answer
print se [Yo, awesome name] :name
print []
question [What sport do you play man?]
make "name answer
print se [What a quincedence I play] :name
print []
question [What's your favorite food man?]
make "name answer
print se [Awesome I like] :name
print []
question [What school do you go to?]
make "name answer
print se [Yo I live in] :name print ['s computer lab]
print [Yo gota go dude.]
end

Figure 28. Help User Guide link of project ideas refer to the Lynx website at
https://lynxcoding.club/ for examples of interactive games.

Figure 29. Refer to the program procedures provided in the A-Mazing activity.

Exploring Computer Science With Lynx

 131

Guide References and Resources

Abelson, Harold. (1982). Apple Logo. New Hampshire: BYTE/McGraw-Hill.

Billstein, Rick. (1982). “Learning Logo and liking it.” The Computing Teacher, 10(3):
 18-20.

Corbosiero, Louis J. (1986). The teaching of grade 7 geometric concepts using Logo.
 Needham, Mass: Needham Public Schools. (ERIC Document Reproduction
 Service No. 286 715)

Cuneo, Diane O. (1985). Young children and turtle graphics programming:
 Understanding turtle commands. Paper presented at the Biennial Meeting of the
 Society for Research in Child Development, Toronto, Ontario, Canada. (ERIC
 Document Reproduction Service No. ED 260 800)

Delclos, Victor R. (1984). Teaching thinking through Logo: The importance
 of method, (Report No. 84.1.2.) Nashville, Tennessee: Learning
 Technology Center. (ERIC Document Reproduction Service No. ED 262
 756)

Friesen, Chuck and others (1984). One key Logo and hands-on activity cards. Lincoln,
 Nebraska: Nebraska State Dept. of Eduction. (ERIC Document Reproduction
 Service No. ED 265 833)

Logo Computer Systems Inc. (2020). Create a Working Ecosystem with Lynx. [Lynx Computer
 software user guide]. Retrieved from: https://lynxcoding.club/

Logo Computer Systems Inc. (2020). Getting Started with Lynx Basic Techniques to Get You
 Started. Volume 19 [Lynx Computer software user guide]. Retrieved from:
 https://lynxcoding.club/

Logo Computer Systems Inc. (2020). List of Lynx primitives. Volume 1.3 [Lynx Computer
 software user guide]. Retrieved from: https://lynxcoding.club/

Logo Computer Systems Inc. (2020). Lynx Vocabulary and Syntax. Volume 1 [Lynx Computer
software user guide]. Retrieved from:
 https://lynxcoding.club/

Horn, M. and Boe, T. (1985). Apple Logo in the classroom. Minnesota: Minnesota
 Educational Computing Consortium.

Hunter, Beverly. (1983). My students use computers: Learning activities for computer
 literacy. Reston, Virginia: Reston Publishing Company. (ERIC Document
 Reproduction Service No. ED 237 060)

Exploring Computer Science With Lynx

 132

Kurland, Midian and Pea, Roy. (1984). Logo programming and thedevelopment of
 planning skills. (Report No. 16). New York, N.Y: Bank Street College of
 Education.

Lee, MiOk. (1991). Effects of guided Logo programming instruction on the development
 of cognitive monitoring strategies among college students. Unpublished Ph.D.
 dissertation, Iowa State University, Ames, Iowa.

Lee, P. and Mitchell, M. (1985). “Demystifying Logo recursion: a storage
 process model of embeded recursion.” The Computing Teacher, 12(5): 197-208.

Logo Computer Systems, Inc. (1986). Logo Writer reference guide. New York, N.Y:
 Logo Computer Systems, Inc.

Logo Computer Systems, Inc. (1986). Learning with LogoWriter. New York, N.Y. Logo
 Computer Systems, Inc.

Logo Computer Systems, Inc. (1986). LogoWriter teacher’s manual. New York, N.Y. Logo
 Computer Systems, Inc.

Logo Foundation. (2012). The Logo Programming Language. Accessed on May 27, 2012 @
 http://el.media.mit.edu/logo-foundation/logo/programming.html

Louie, Steven. (1985). Locus of control among computer-using school children. A
 report of a pilot study. Tucson, Arizona: Natinal Advisory Council for Computer
 Implementation in Schools. (ERIC Document Reproduction Service No.
 ED 260 692)

Logo Computer Systems Inc. (2020). Lynx [Computer software]. Retrieved from:
 https://lynxcoding.club/

Martin, Kathleen and Riordon, Tim. (1984). “Polyspirals.” The Computing Teacher
 11(6): 53-55.

Martin, Max. (1985). “Recursion -- a powerful, but often difficult idea.” Computers in the
 Schools, 2 (2/3): 209-217.

Nolan, Pat and Ryba, Ken. (1986) Assessing learning with Logo. Eugene, Oregon:
 International Council for Computers in Education, University of Oregon.
 (ERIC Document Reproduction Service No. ED 290 461).

Papert, Seymour (1980). Mindstorms. New York, N.Y. Basic Books Inc., Publishers.

Stager, Gary (2007). Planet Papert articles by and about Seymour Papert. Accessed
 on July 12, 2007 @ http://www.stager.org/planetpapert.html

Exploring Computer Science With Lynx

 133

Temple, Michael and others. (1985). The ECCO Logo project: materials for
 classroom teachers and teacher trainers. Eugene, Oregon: International Council
 for Computers in Education, University of Oregon. (ERIC Document
 Reproduction Service No. ED 288 487).

Thomas, Elearnor M., and Thomas, Rex A. (1984). Exploring geometry with Logo.
 Arithmetic Teacher, 32(1): 16-18.

Torgerson, Shirley and others. (1984). Logo in the Classroom. Eugene, Oregon:
 International Council for Computers in Education, University of Oregon.
 (ERIC Document Reproduction Service No. ED 248 847).

Walsh, Thomas E. (1993). The implementation and evaluation of a sequential,
 Structured approach for teaching LogoWriter to classroom teachers. Journal of
 Educational Technology Systems 21(4): 343-362.

Walsh, Thomas E. (1994). “Facilitating Logo’s potential using teacher-mediated delivery
 of instruction: A literature review.” Journal of Research on Computing in
 Education, 26(3): 322-335.

Watt, Dan. (1983). Learning with Logo. New York, N.Y. McGraw Hill.

Webb, J., Martins, P. Holmes, M. (1984). Explorers Guide to Apple Logo. Hasbrouck
 Heights, New Jersey: Hayden Book Co.

Yoder, S. (1988). Introduction to Programming in Logo using LogoWriter.
 Eugene, Oregon: International Council for Computers in Education.

Exploring Computer Science With Lynx

 134

